Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 34(5): 2001-2018, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35099557

RESUMEN

Flowering is a critical agricultural trait that substantially affects tomato fruit yield. Although drought stress influences flowering time, the molecular mechanism underlying drought-regulated flowering in tomato remains elusive. In this study, we demonstrated that loss of function of tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for abscisic acid (ABA) signaling and abiotic stress responses, lowers the tolerance of tomato plants to drought stress. slost1 mutants also exhibited a late flowering phenotype under both normal and drought stress conditions. We also established that SlOST1 directly interacts with and phosphorylates the NAC (NAM, ATAF and CUC)-type transcription factor VASCULAR PLANT ONE-ZINC FINGER 1 (SlVOZ1), at residue serine 67, thereby enhancing its stability and nuclear translocation in an ABA-dependent manner. Moreover, we uncovered several SlVOZ1 binding motifs from DNA affinity purification sequencing analyses and revealed that SlVOZ1 can directly bind to the promoter of the major flowering-integrator gene SINGLE FLOWER TRUSS to promote tomato flowering transition in response to drought. Collectively, our data uncover the essential role of the SlOST1-SlVOZ1 module in regulating flowering in response to drought stress in tomato and offer insights into a novel strategy to balance drought stress response and flowering.


Asunto(s)
Solanum lycopersicum , Ácido Abscísico/metabolismo , Sequías , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/metabolismo , Proteínas Quinasas/metabolismo
2.
Appl Environ Microbiol ; 90(4): e0179023, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38506521

RESUMEN

Fermented microbiota is critical to the formation of microenvironment and metabolic profiles in spontaneous fermentation. Microorganisms generate a diverse array of metabolites concurrent with the release of heat energy. In the case of Daqu fermentation, the peak temperature exceeded 60°C, forming a typical high-temperature fermentation system known as high-temperature Daqu. However, microorganisms that cause the quality variation in Daqu and how they affect the functional microbiota and microenvironment in the fermentation process are not yet clear. This study adopted high-throughput sequencing and monitored the dynamic fluctuations of metabolites and environmental factors to identify the pivotal microorganism responsible for the alterations in interaction patterns of functional keystone taxa and quality decline in the fermentation system of different operational areas during the in situ fermentation process that had been mainly attributed to operational taxonomic unit (OTU)_22 (Pediococcus acidilactici). Additionally, we used isothermal microcalorimetry, plate inhibition experiments, and in vitro simulation fermentation experiments to explore the impact of Pediococcus spp. on heat generation, microorganisms, and metabolite profiles. Results showed the heat peak generated by Pediococcus spp. was significantly lower than that of Bacillus spp., filamentous fungi, and yeast. In addition, the preferential growth of P. acidilactici strain AA3 would obviously affect other strains to colonize through competition, and its metabolites made a significant impact on filamentous fungi. The addition of P. acidilactici strain AA3 in simulated fermentation would cause the loss of pyrazines and acids in metabolites. These evidences showed that the overgrowth of Pediococcus spp. greatly influenced the formation of high temperatures and compounds in solid-state fermentation systems. Our work illustrated the vital impact of interaction variability mediated by Pediococcus spp. for microbial assembly and metabolites, as well as in forming temperature. These results emphasized the functional role of Daqu microbiota in metabolites and heat production and the importance of cooperation in improving the fermentation quality.IMPORTANCEThe stable and high-quality saccharifying and fermenting starter in traditional solid-state fermentation was the prerequisite for liquor brewing. An imbalance of microbial homeostasis in fermentation can adversely impact production quality. Identification of such critical microorganisms and verifying their associations with other fermentation parameters pose a challenge in a traditional fermentation environment. To enhance the quality of spontaneous fermented products, strategies such as bioaugmentation or the control of harmful microorganisms would be employed. This work started with the differences in high-temperature Daqu metabolites to explore a series of functional microorganisms that could potentially contribute to product disparities, and found that the differences in interactions facilitated directly or indirectly by Pediococcus spp. seriously affected the development of microbial communities and metabolites, as well as the formation of the microenvironment. This study not only identified functional microbiota in Daqu that affected fermentation quality, but also demonstrated how microorganisms interact to affect the fermentation system, which would provide guidance for microbial supervision in the actual production process. Besides, the application of isothermal microcalorimetry in this study was helpful for us to understand the heat production capacity of microorganisms and their adaptability to the environment. This study presented a commendable framework for improving and controlling the quality of traditional fermentation and inspired further investigations in similar systems.


Asunto(s)
Microbiota , Pediococcus , Temperatura , Bebidas Alcohólicas/análisis , Fermentación , Hongos/fisiología , Metaboloma , Saccharomyces cerevisiae , Microbiota/fisiología
3.
Plant Physiol ; 191(1): 446-462, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36331331

RESUMEN

DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas R-SNARE/genética , Proteínas de Unión al ARN/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-13, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214674

RESUMEN

Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.

5.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731419

RESUMEN

It is a valid path to realize the zero discharge of coal chemical wastewater by using the fractional crystallization method to recycle the miscellaneous salt in high-salinity wastewater. In this study, the thermodynamics and nucleation kinetics of sodium chloride (NaCl) and sodium sulfate (Na2SO4) crystallization in coal chemical wastewater were systematically studied. Through analyses of solubility, metastable zone width, and induction period, it was found that the impurity dimethoxymethane would increase the solid-liquid interface energy and critical crystal size during the nucleation of Na2SO4. Ternary phase diagrams of the pseudo-ternary Na2SO4-NaCl-H2O systems in simulated wastewater were plotted in the temperature range of 303.15 to 333.15 K, indicating that a co-ionization effect existed between NaCl and Na2SO4, and NaCl had a strong salting out effect on Na2SO4. Finally, the nucleation rate and growth rate of Na2SO4 crystals under simulated wastewater conditions were determined by the intermittent dynamic method, and the crystallization kinetic models of Na2SO4 were established. The crystallization nucleation of Na2SO4 crystals was found to be secondary nucleation controlled by surface reactions. The basic theoretical research of crystallization in this study is expected to fundamentally promote the application of fractional crystallization to realize the resource utilization of high-salinity wastewater in the coal chemical industry.

6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 671-680, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621871

RESUMEN

Traditional Chinese medicine is precious treasure of ancient Chinese science and a key to unlocking the treasure trove of Chinese civilization. To elucidate the efficacy and mechanism of traditional Chinese medicines, scientists have been engaged in the research on the molecular basis and regulatory targets. Molecular docking is a computer-aided drug design method capable of visualizing the interaction between components and target proteins. With the progress in the modernization of traditional Chinese medicine and the advancement of algorithms and computing power, molecular docking has become an essential approach in the development of new traditional Chinese medicines. This article summarizes the recent research progress in molecular docking in the development of traditional Chinese medicine, aiming to provide valuable references for further screening of active components and offering insights for improving the development of new traditional Chinese medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Simulación del Acoplamiento Molecular
7.
Plant J ; 111(4): 1123-1138, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35763512

RESUMEN

Brassica napus is an important oil crop and an allotetraploid species. However, the detailed analysis of gene function and homoeologous gene expression in all tissues at different developmental stages was not explored. In this study, we performed a global transcriptome analysis of 24 vegetative and reproductive tissues at six developmental stages (totally 111 tissues). These samples were clustered into eight groups. The gene functions of silique pericarp were similar to roots, stems and leaves. In particular, glucosinolate metabolic process was associated with root and silique pericarp. Genes involved in protein phosphorylation were often associated with stamen, anther and the early developmental stage of seeds. Transcription factor (TF) genes were more specific than structural genes. A total of 17 100 genes that were preferentially expressed in one tissue (tissue-preferred genes, TPGs), including 889 TFs (5.2%), were identified in the 24 tissues. Some TPGs were identified as hub genes in the co-expression network analysis, and some TPGs in different tissues were involved in different hormone pathways. About 67.0% of the homoeologs showed balanced expression, whereas biased expression of homoeologs was associated with structural divergence. In addition, the spatiotemporal expression of homoeologs was related to the presence of transposable elements (TEs) and regulatory elements (REs); more TEs and fewer REs in the promoters resulted in divergent expression in different tissues. This study provides a valuable transcriptional map for understanding the growth and development of B. napus, for identifying important genes for future crop improvement, and for exploring gene expression patterns in the B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta , Semillas/genética , Transcriptoma
8.
Anal Chem ; 95(2): 1454-1460, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36538530

RESUMEN

Organic photoelectrochemical transistor (OPECT) bioanalytics has recently appeared as a promising route for biological measurements, which has major implications in both next-generation photoelectrochemical (PEC) bioanalysis and futuristic biorelated implementations. Via biological dissociation of materials, bioetching is a useful technique for bio-manufacturing and bioanalysis. The intersection of these two domains is expected to be a possible way to achieve innovative OPECT bioanalytics. Herein, we validate such a possibility, which is exemplified by alkaline phosphatase (ALP)-mediated bioetching of a CoOOH/BiVO4 gate for a signal-on OPECT immunoassay of human immunoglobulin G (HIgG) as the model target. Specifically, target-dependent bioetching of the upper CoOOH layer could result into an enhanced electrolyte contact and light accessibility to BiVO4, leading to the modulated response of the polymeric poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel that could be monitored by the channel current. The introduced biosensor achieves sensitive detection of HIgG with high selectivity and sensitivity. This work features bioetching-enabled high-efficacy OPECT bioanalysis and is anticipated to serve as a generic protocol, considering the diverse bioetching routes.


Asunto(s)
Fosfatasa Alcalina , Técnicas Biosensibles , Humanos , Fosfatasa Alcalina/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Óxidos
9.
Mol Ecol ; 32(10): 2534-2550, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36349836

RESUMEN

The Siberian roe deer (Capreolus pygargus) is a widely distributed ungulate in northeast China. Due to a series of human disturbance activities such as large-scale forest cutting, deforestation and reclamation, road construction in the past, the appearance and internal structure of forest vegetation in the habitat of Siberian roe have changed significantly. At the same time, Siberian roe population had a series of ecological adaptation responses in the face of such habitat changes. Therefore, two typical vegetation types with differences were selected in the Muling Forest, China. We used nutritional ecology and microbial metagenomic analysis techniques to compare the nutritional selection strategy and the structure and functional characteristics of faecal microbiota of Siberian roe groups in two vegetation types. The results showed that the α diversity of dietary and gut microbes of deer in Natural Forest was higher than that in Plantation Forest. However, the gut microbes of the Plantation Forest group contained more unique enzymes in the functional pathways of carbon metabolism and biosynthesis of amino acids. This study suggests that habitat type is associated with plant community composition, and contributes to changes in the intake proportions of major macronutrients by altering the availability, quality, and composition of certain edible plants. Feeding behaviour may be an important regulatory factor of gut microbiota structure and function of deer. The metabolic function of gut microbiota to different nutrients may affect the microbial community structure. Therefore, our results suggest that the gut microbes of Siberian roe may have coevolved with their diets, and reflect the adaptability of deer populations to environmental changes (e.g., vegetation type). Our study provides new insights into how spatial heterogeneity affects nutrition and microecosystems by describing the interactions among the environment, diet, and symbiotic gut microbes in wild ungulates.


Asunto(s)
Ciervos , Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ciervos/fisiología , Microbioma Gastrointestinal/genética , Bosques , Dieta/veterinaria
10.
EMBO Rep ; 22(6): e51649, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33855783

RESUMEN

Pathological TDP-43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP); however, how TDP-43 aggregation and function are regulated remain poorly understood. Here, we show that O-GlcNAc transferase OGT-mediated O-GlcNAcylation of TDP-43 suppresses ALS-associated proteinopathies and promotes TDP-43's splicing function. Biochemical and cell-based assays indicate that OGT's catalytic activity suppresses TDP-43 aggregation and hyperphosphorylation, whereas abolishment of TDP-43 O-GlcNAcylation impairs its RNA splicing activity. We further show that TDP-43 mutations in the O-GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP-43 overexpression in Drosophila motor neurons. We finally demonstrate that O-GlcNAcylation of TDP-43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O-GlcNAcylation might be a target for the treatment of TDP-43-linked pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Empalme del ARN , ARN Mensajero/genética
11.
BMC Musculoskelet Disord ; 24(1): 609, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491198

RESUMEN

PURPOSE: Steroid-induced necrosis of the femoral head (SONFH) is a refractory orthopedic hip disease occurring in young and middle-aged people, with glucocorticoids being the most common cause. Previous experimental studies have shown that cell pyroptosis may be involved in the pathological process of SONFH, but its pathogenesis in SONFH is still unclear. This study aims to screen and validate potential pyroptosis-related genes in SONFH diagnosis by bioinformatics analysis to further elucidate the mechanism of pyroptosis in SONFH. METHODS: There were 33 pyroptosis-related genes obtained from the prior reviews. The mRNA expression was downloaded from GSE123568 dataset in the Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The pyroptosis-related differentially expressed genes involved in SONFH were identified with "affy" and "limma" R package by intersecting the GSE123568 dataset with pyroptosis genes. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the pyroptosis-related differentially expressed genes involved in SONFH were conducted by "clusterProfiler" R package and visualized by "GOplot" R package. Then, the correlations between the expression levels of the pyroptosis-related differentially expressed genes involved in SONFH were confirmed with "corrplot" R package. Moreover, the protein-protein interaction (PPI) network was analysed by using GeneMANIA database. Next, The ROC curve of pyroptosis-related differentially expressed genes were analyzed by "pROC" R package. RESULTS: A total of 10 pyroptosis-related differentially expressed genes were identified between the peripheral blood samples of SONFH patients and non-SONFH patients based on the defined criteria, including 20 upregulated genes and 10 downregulated genes. The GO and KEGG pathway enrichment analyses revealed that these 10 pyroptosis-related differentially expressed genes involved in SONFH were particularly enriched in cysteine-type endopeptidase activity involved in apoptotic process, positive regulation of interleukin-1 beta secretion and NOD-like receptor signaling pathway. Correlation analysis revealed significant correlations among the 10 differentially expressed pyroptosis-related genes involved in SONFH. The PPI results demonstrated that the 10 pyroptosis-related differentially expressed genes interacted with each other. Compared to non-SONFH samples, these pyroptosis-related differentially expressed genes had good predictive diagnostic efficacy (AUC = 1.000, CI = 1.000-1.000) in the SONFH samples, and NLRP1 had the highest diagnostic value (AUC: 0.953) in the SONFH samples. CONCLUSIONS: There were 10 potential pyroptosis-related differentially expressed genes involved in SONFH were identified via bioinformatics analysis, which might serve as potential diagnostic biomarkers because they regulated pyroptosis. These results expand the understanding of SONFH associated with pyroptosis and provide new insights to further explore the mechanism of action and diagnosis of pyroptosis associated in SONFH.


Asunto(s)
Cabeza Femoral , Osteonecrosis , Persona de Mediana Edad , Humanos , Cabeza Femoral/metabolismo , Piroptosis , Osteonecrosis/inducido químicamente , Osteonecrosis/genética , Esteroides/efectos adversos , Necrosis , Biología Computacional/métodos , Biomarcadores/metabolismo
12.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373125

RESUMEN

Human-driven plant selection, a practice as ancient as agriculture itself, has laid the foundations of plant breeding and contemporary farming [...].


Asunto(s)
Fitomejoramiento , Plantas , Humanos , Plantas/genética , Agricultura , Biología Molecular
13.
Compr Rev Food Sci Food Saf ; 22(3): 1902-1932, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880579

RESUMEN

Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.


Asunto(s)
Microbiota , Fermentación , Alimentos , Microbiología de Alimentos
14.
Angew Chem Int Ed Engl ; 62(38): e202308732, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37534823

RESUMEN

Aliphatic trifluoromethyl ketones are a type of unique fluorine-containing subunit which play a significant role in altering the physical and biological properties of molecules. Catalytic methods to provide direct access to aliphatic trifluoromethyl ketones are highly desirable yet remain underdeveloped, partially owing to the high reactivity and instability of trifluoroacetyl radical. Herein, we report a photocatalytic synthesis of trifluoromethyl ketones from alkyl bromides with trifluoroacetic anhydride. The reaction features dual visible-light and halogen-atom-transfer catalysis, followed by an enabling radical-radical cross-coupling of an alkyl radical with a stabilized trifluoromethyl radical. The reaction provides straightforward access to aliphatic trifluoromethyl ketones from readily available and cost-effective alkyl halides and trifluoroacetic anhydride (TFAA).

15.
Nucleic Acids Res ; 48(15): 8360-8373, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32619236

RESUMEN

Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.


Asunto(s)
Proliferación Celular/genética , Histona Demetilasas/genética , Proteínas Quinasas/genética , ARN Ribosómico/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/genética , Regulación Fúngica de la Expresión Génica/genética , Fosforilación , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transcripción Genética
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012533

RESUMEN

The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563356

RESUMEN

Nitrate transporter 2 (NRT2) plays an essential role in Nitrogen (N) uptake, transport, utilization, and stress resistance. In this study, the NRT2 gene family in two sequenced Brassica napus ecotypes were identified, including 31 genes in 'Zhongshuang11' (BnaZSNRT2s) and 19 in 'Darmor-bzh' (BnaDarNRT2s). The candidate genes were divided into three groups (Group I-III) based on phylogenetic analyses, supported by a conserved intron-exon structure in each group. Collinearity analysis revealed that the large expansion of BnaZSNRT2s attributed to allopolyploidization of ancestors Brassica rapa and Brassica oleracea, and small-scale duplication events in B. napus. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of BnaZSNRT2s are regulated by multiple factors, and the regulatory pattern is relatively conserved in each group and is tightly connected between groups. Expression assay showed the diverse and differentiated spatial-temporal expression profiles of BnaZSNRT2s in Group I, but conserved patterns were observed in Group II/III; and the low nitrogen (LN) stress up-regulated expression profiles were presented in Group I-III, based on RNA-seq data. RT-qPCR analyses confirmed that BnaZSNRT2.5A-1 and BnaZSNRT2.5C-1 in Group II were highly up-regulated under LN stress in B. napus roots. Our results offer valid information and candidates for further functional BnaZSNRT2s studies.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Familia de Multigenes , Transportadores de Nitrato , Nitrógeno/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Angew Chem Int Ed Engl ; 61(41): e202209929, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35976746

RESUMEN

Three-membered cyclic structures are widely existing in natural products and serve as enabling intermediates in organic synthesis. However, the efficient and straightforward access to such structures with diversity remains a formidable challenge. Herein, a general and practical protocol to aziridines and cyclopropanes synthesis using free XH2 (X=C or N) with alkenes by thianthrenation is presented. This metal-free protocol features the direct aziridination and cyclopropanation with unprotected XH2 . Free sulfonamides, amides, carbamates, amines, and methylene with acidic protons, are good precursors, providing an attractive alternative for straightforward synthesis of aziridines and cyclopropanes from easily available starting materials.

19.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33608301

RESUMEN

Volatile organic compounds (VOCs) are chemicals responsible for antagonistic activity between microorganisms. The impact of VOCs on microbial community succession of fermentation is not well understood. In this study, Pichia spp. were evaluated for VOC production as a part of antifungal activity during baijiu fermentation. The results showed that the abundance of Pichia in the defect group (agglomerated fermented grains) was lower than that in control group, and a negative interaction between Pichia and Monascus was determined (P < 0.05). In addition, the disruption of fungi was significantly related to the differences of metabolic profiles in fermented grains. To determine production of VOCs from Pichia and its effect on Monascus purpureus, a double-dish system was assessed, and the incidence of M. purpureus reduction was 39.22% after 7 days. As to antifungal volatile compounds, 2-phenylethanol was identified to have an antifungal effect on M. purpureus through contact and noncontact. To further confirm the antifungal activity of 2-phenylethanol, scanning electron microscopy showed that 2-phenylethanol widely and significantly inhibited conidium germination and mycelial growth of filamentous fungi. Metatranscriptomic analysis revealed that the Ehrlich pathway is the metabolic path of 2-phenylethanol in Pichia and identified potential antifungal mechanisms, including protein synthesis and DNA damage. This study demonstrated the role of volatile compound-mediated microbial interaction in microbiome assembly and discovered a plausible scenario in which Pichia antagonized fungal blooms. The results may improve the niche establishment and growth of the functional yeast that enhances the flavor of baijiu.IMPORTANCE Fermentation of food occurs within communities of interacting species. The importance of microbial interactions in shaping microbial structure and metabolic performance to optimize the traditional fermentation process has long been emphasized, but the interaction mechanisms remain unclear. This study applied metabolome analysis and amplicon sequencing along with metatranscriptomic analysis to examine the volatile organic compound-mediated antifungal activity of Pichia and its effect on the metabolism of ethanol during baijiu fermentation, potentially enhancing the establishment of the fermentation niche and improving ethanol metabolism.


Asunto(s)
Agentes de Control Biológico/metabolismo , Etanol/metabolismo , Monascus/crecimiento & desarrollo , Pichia/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Bebidas Alcohólicas , Bacterias/metabolismo , Daño del ADN , ADN de Hongos , Fermentación , Metaboloma , Monascus/genética , Biosíntesis de Proteínas
20.
BMC Genomics ; 21(1): 871, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287703

RESUMEN

BACKGROUND: NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family (NPF) members are essential transporters for many substrates in plants, including nitrate, hormones, peptides, and secondary metabolites. Here, we report the global characterization of NPF in the important oil crop Brassica napus, including that for phylogeny, gene/protein structures, duplications, and expression patterns. RESULTS: A total of 199 B. napus (BnaNPFs) NPF-coding genes were identified. Phylogenetic analyses categorized these genes into 11 subfamilies, including three new ones. Sequence feature analysis revealed that members of each subfamily contain conserved gene and protein structures. Many hormone-/abiotic stress-responsive cis-acting elements and transcription factor binding sites were identified in BnaNPF promoter regions. Chromosome distribution analysis indicated that BnaNPFs within a subfamily tend to cluster on one chromosome. Syntenic relationship analysis showed that allotetraploid creation by its ancestors (Brassica rapa and Brassica oleracea) (57.89%) and small-scale duplication events (39.85%) contributed to rapid BnaNPF expansion in B. napus. A genome-wide spatiotemporal expression survey showed that NPF genes of each Arabidopsis and B. napus subfamily have preferential expression patterns across developmental stages, most of them are expressed in a few organs. RNA-seq analysis showed that many BnaNPFs (32.66%) have wide exogenous hormone-inductive profiles, suggesting important hormone-mediated patterns in diverse bioprocesses. Homologs in a clade or branch within a given subfamily have conserved organ/spatiotemporal and hormone-inductive profiles, indicating functional conservation during evolution. qRT-PCR-based comparative expression analysis of the 12 BnaNPFs in the NPF2-1 subfamily between high- and low-glucosinolate (GLS) content B. napus varieties revealed that homologs of AtNPF2.9 (BnaNPF2.12, BnaNPF2.13, and BnaNPF2.14), AtNPF2.10 (BnaNPF2.19 and BnaNPF2.20), and AtNPF2.11 (BnaNPF2.26 and BnaNPF2.28) might be involved in GLS transport. qRT-PCR further confirmed the hormone-responsive expression profiles of these putative GLS transporter genes. CONCLUSION: We identified 199 B. napus BnaNPFs; these were divided into 11 subfamilies. Allopolyploidy and small-scale duplication events contributed to the immense expansion of BnaNPFs in B. napus. The BnaNPFs had preferential expression patterns in different tissues/organs and wide hormone-induced expression profiles. Four BnaNPFs in the NPF2-1 subfamily may be involved in GLS transport. Our results provide an abundant gene resource for further functional analysis of BnaNPFs.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA