Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7853): 302-308, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762732

RESUMEN

Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Células Clonales/metabolismo , Células Clonales/patología , Evolución Molecular , Secuencia de Bases , Línea Celular Tumoral , Linaje de la Célula , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Inestabilidad Genómica/genética , Humanos , Pérdida de Heterocigocidad/genética , Modelos Genéticos , Tasa de Mutación , Imagen Individual de Molécula , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
2.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37467750

RESUMEN

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , ARN Helicasas DEAD-box/genética , Diclorodifenil Dicloroetileno , ADN Helicasas , Mamíferos , Proteínas de Neoplasias/genética
3.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153174

RESUMEN

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Programas Informáticos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Homocigoto , Enfermedades Raras/genética
4.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948005

RESUMEN

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética Inversa
5.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582790

RESUMEN

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Asunto(s)
Genómica/métodos , Mutación , Trastornos del Neurodesarrollo/epidemiología , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Prevalencia , Turquía/epidemiología , Secuenciación del Exoma , Adulto Joven
6.
Genet Med ; : 101273, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306721

RESUMEN

PURPOSE: FLVCR1 encodes a solute carrier (SLC) protein implicated in heme, choline, and ethanolamine transport. While Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS: We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS: We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (Z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits including macrocytic anemia and skeletal malformations with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION: These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.

7.
Hum Genet ; 142(6): 721-733, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031326

RESUMEN

We previously reported a fetus with Fanconi anemia (FA), complementation group O due to compound heterozygous variants involving RAD51C. Interestingly, the trio exome sequencing analysis also detected eight apparent de novo mosaic variants with variant allele fraction (VAF) ranging between 11.5 and 37%. Here, using whole genome sequencing and a 'home-brew' variant filtering pipeline and DeepMosaic module, we investigated the number and signature of de novo heterozygous and mosaic variants and the hypothesis of a rare phenomenon of hypermutation. Eight-hundred-thirty apparent de novo SNVs and 21 de novo indels had VAFs below 37.41% and were considered postzygotic somatic mosaic variants. The VAFs showed a bimodal distribution, with one component having an average VAF of 25% (range: 18.7-37.41%) (n = 446), representing potential postzygotic first mitotic events, and the other component with an average VAF of 12.5% (range 9.55-18.69%) (n = 384), describing potential second mitotic events. No increased rate of CNV formation was observed. The mutational pattern analysis for somatic single base substitution showed SBS40, SBS5, and SBS3 as the top recognized signatures. SBS3 is a known signature associated with homologous recombination-based DNA damage repair error. Our data demonstrate that biallelic RAD51C variants show evidence for defective genomic DNA damage repair and thereby result in a hypermutator phenotype with the accumulation of postzygotic de novo mutations, at least in the prenatal period. This 'genome hypermutator phenomenon' might contribute to the observed hematological manifestations and the predisposition to tumors in patients with FA. We propose that other FA groups should be investigated for genome-wide de novo variants.


Asunto(s)
Anemia de Fanconi , Predisposición Genética a la Enfermedad , Humanos , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Fenotipo
8.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471564

RESUMEN

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Asunto(s)
Apirasa , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Sustancia Blanca , Apirasa/genética , Disartria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
9.
Am J Med Genet A ; 191(3): 794-804, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598158

RESUMEN

Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.


Asunto(s)
Microcefalia , Recién Nacido , Humanos , Microcefalia/genética , Codón de Terminación , Irán , Proteínas Asociadas a Microtúbulos/genética , Mutación del Sistema de Lectura/genética , Linaje
10.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711075

RESUMEN

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Trastornos Congénitos de Glicosilación , Humanos , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Fibroblastos/metabolismo , Trastornos Congénitos de Glicosilación/genética , Fenotipo
11.
Brain ; 145(3): 909-924, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34605855

RESUMEN

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Asunto(s)
Epilepsia Generalizada , Intercambiador de Sodio-Calcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrógeno/metabolismo , Intercambiador de Sodio-Calcio/genética
12.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35344616

RESUMEN

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Asunto(s)
Anomalías Craneofaciales , Enanismo , Deformidades Congénitas de las Extremidades , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Anomalías Urogenitales , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo/diagnóstico , Enanismo/genética , Genes Recesivos , Humanos , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética
13.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630790

RESUMEN

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Asunto(s)
Variación Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimiento Celular/genética , Niño , Exoma/genética , Femenino , Homocigoto , Humanos , Masculino , Microtúbulos/genética , Malformaciones del Sistema Nervioso/genética , Neuronas/metabolismo , Fenotipo , Tubulina (Proteína)/genética
14.
Genet Med ; 24(2): 364-373, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906496

RESUMEN

PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.


Asunto(s)
Anomalías Múltiples , Deformidades Congénitas de la Mano , Micrognatismo , Anomalías Múltiples/genética , Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Exoma/genética , Deformidades Congénitas de la Mano/genética , Humanos , Micrognatismo/genética , Estudios Retrospectivos
15.
Am J Med Genet A ; 188(2): 648-657, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761517

RESUMEN

SMG8 (MIM *617315) is a regulatory subunit involved in nonsense-mediated mRNA decay (NMD), a cellular protective pathway that regulates mRNA transcription, transcript stability, and degrades transcripts containing premature stop codons. SMG8 binds SMG9 and SMG1 to form the SMG1C complex and inhibit the kinase activity of SMG1. Biallelic deleterious variants in SMG9 are known to cause a heart and brain malformation syndrome (HBMS; MIM #616920), whereas biallelic deleterious variants in SMG8 were recently described to cause a novel neurodevelopmental disorder (NDD) with dysmorphic facies and cataracts, now defined as Alzahrani-Kuwahara syndrome (ALKUS: MIM #619268). Only eight subjects from four families with ALKUS have been described to date. Through research reanalysis of a nondiagnostic clinical exome, we identified a subject from a fifth unrelated family with a homozygous deleterious variant in SMG8 and features consistent with ALKUS. Interestingly, the subject also had unilateral microphthalmia, a clinical feature that has been described in SMG9-related disorder. Our study expands the phenotypic spectrum of SMG8-related disorder, demonstrates an overlapping phenotype between SMG8- and SMG9-related rare disease traits, provides further evidence for the SMG8 and SMG9 protein interactions, and highlights the importance of revisiting nondiagnostic exome data to identify and affirm emerging novel genes for rare disease traits.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Degradación de ARNm Mediada por Codón sin Sentido , Alelos , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fenotipo , Fosforilación
16.
Am J Med Genet A ; 188(3): 735-750, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34816580

RESUMEN

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.


Asunto(s)
Distrofia Muscular de Cinturas , Trastornos del Neurodesarrollo , Animales , Calpaína/genética , Egipto , Humanos , Lactante , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Secuenciación del Exoma
17.
Am J Med Genet A ; 188(7): 2153-2161, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332675

RESUMEN

Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Osteomielitis , Insuficiencia Renal , Alelos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Osteomielitis/genética , Linaje
18.
Genet Med ; 23(12): 2455-2460, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385670

RESUMEN

PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.


Asunto(s)
Parálisis Cerebral , Epilepsia , Microcefalia , Trastornos del Neurodesarrollo , Proteínas Nucleares/genética , Parálisis Cerebral/genética , Epilepsia/genética , Humanos , Microcefalia/genética , Microcefalia/patología , Trastornos del Neurodesarrollo/genética , Linaje , Empalme del ARN
19.
Am J Med Genet A ; 185(7): 1972-1980, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797191

RESUMEN

Biallelic loss-of-function (LoF) of SLC13A5 (solute carrier family 13, member 5) induced deficiency in sodium/citrate transporter (NaCT) causes autosomal recessive developmental epileptic encephalopathy 25 with hypoplastic amelogenesis imperfecta (DEE25; MIM #615905). Many pathogenic SLC13A5 single nucleotide variants (SNVs) and small indels have been described; however, no cases with copy number variants (CNVs) have been sufficiently investigated. We describe a consanguineous Iraqi family harboring an 88.5 kb homozygous deletion including SLC13A5 in Chr17p13.1. The three affected male siblings exhibit neonatal-onset epilepsy with fever-sensitivity, recurrent status epilepticus, global developmental delay/intellectual disability (GDD/ID), and other variable neurological findings as shared phenotypical features of DEE25. Two of the three affected subjects exhibit hypoplastic amelogenesis imperfecta (AI), while the proband shows no evidence of dental abnormalities or AI at 2 years of age with apparently unaffected primary dentition. Characterization of the genomic architecture at this locus revealed evidence for genomic instability generated by an Alu/Alu-mediated rearrangement; confirmed by break-point junction Sanger sequencing. This multiplex family from a distinct population elucidates the phenotypic consequence of complete LoF of SLC13A5 and illustrates the importance of read-depth-based CNV detection in comprehensive exome sequencing analysis to solve cases that otherwise remain molecularly unsolved.


Asunto(s)
Elementos Alu/genética , Epilepsia Generalizada/genética , Discapacidad Intelectual/genética , Simportadores/genética , Preescolar , Cromosomas Humanos Par 17/genética , Variaciones en el Número de Copia de ADN/genética , Epilepsia Generalizada/patología , Femenino , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Mutación/genética , Linaje , Eliminación de Secuencia/genética , Secuenciación del Exoma
20.
Am J Med Genet A ; 185(8): 2532-2540, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089229

RESUMEN

The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.


Asunto(s)
Antígenos de Neoplasias/genética , Muerte Súbita Cardíaca/etiología , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Proteínas de Unión al ARN/genética , Bloqueo Atrioventricular/diagnóstico , Bloqueo Atrioventricular/genética , Niño , Ecocardiografía , Electrocardiografía , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA