Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2364-2375, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812137

RESUMEN

To explore the active substances exerting anti-tumour effect in lemon essential oil and the molecular mechanism inhibiting the proliferation of head and neck cancer cells SCC15 and CAL33, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay(MTT) was utilized to identify the active component inhibiting the proliferation of head and neck cancer cells, namely citral. The IC_(50) of citral inhibiting the proliferation of head and neck cancer cells and normal cells were also determined. In addition, a 5-ethynyl-2'-deoxyuridine(EdU) staining assay was used to detect the effect of citral on the proliferation rate of head and neck cancer cells, and a colony formation assay was used to detect the effect of citral on tumor sphere formation of head and neck cancer cells in vitro. The cell cycle arrest and apoptosis induction of head and neck cancer cells by citral were evaluated by flow cytometry, and Western blot was used to detect the effect of citral on the expression levels of cell cycle-and apoptosis-related proteins in head and neck cancer cells. The findings indicated that citral could effectively inhibit the proliferation and growth of head and neck cancer cells, with anti-tumor activity, and its half inhibitory concentrations for CAL33 and SCC15 were 54.78 and 25.23 µg·mL~(-1), respectively. Furthermore, citral arrested cell cycle at G_2/M phase by down-regulating cell cycle-related proteins such as S-phase kinase associated protein 2(SKP2), C-MYC, cyclin dependent kinase 1(CDK1), and cyclin B. Moreover, citral increased the cysteinyl aspartate-specific proteinase-3(caspase-3), cysteinyl aspartate-specific proteinase-9(caspase-9), and cleaved poly ADP-ribose polymerase(PARP). It up-regulated the level of autophagy-related proteins including microtubule associated protein 1 light chain 3B(LC3B), sequestosome 1(P62/SQSTM1), autophagy effector protein Beclin1(Beclin1), and lysosome-associate membrane protein 1(LAMP1), suggesting that citral could effectively trigger cell apoptosis and cell autophagy in head and neck cancer cells. Furthermore, the dual-tagged plasmid system mCherry-GFP-LC3 was used, and it was found that citral impeded the fusion of autophagosomes and lysosomes, leading to autophagic flux blockage. Collectively, our findings reveal that the main active anti-proliferation component of lemon essential oil is citral, and this component has a significant inhibitory effect on head and neck cancer cells. Its underlying molecular mechanism is that citral induces apoptosis and autophagy by cell cycle arrest and ultimately inhibits cell proliferation.


Asunto(s)
Monoterpenos Acíclicos , Apoptosis , Proliferación Celular , Neoplasias de Cabeza y Cuello , Monoterpenos , Aceites Volátiles , Humanos , Proliferación Celular/efectos de los fármacos , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/química , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Aceites Volátiles/farmacología , Aceites Volátiles/química , Monoterpenos/farmacología , Monoterpenos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Citrus/química , Aceites de Plantas/farmacología , Aceites de Plantas/química
2.
Carcinogenesis ; 44(10-11): 726-740, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37747815

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has been found to have a high mortality rate. Despite continuous efforts, current histopathological classification is insufficient to guide individualized therapies of PDA. We first define the molecular subtypes of PDA (MSOP) based on a meta-cohort of 845 samples from 11 PDA datasets. We then performed functional analyses involving immunity, fibrosis and metabolism. We recognized six molecular subtypes with different survival statistics and molecular composition. The squamous basal-like (SBL) subtype had a poor prognosis and high infiltration of ENO1+ (Enolase 1)/ADM+ (Adrenomedullin) cancer-associated fibroblasts (CAFs). The immune mesenchymal-like (IML) subtype and the normal mesenchymal-like (NML) subtype were characterized by genes associated with extracellular matrix (ECM) activities and immune responses, having favorable prognoses. IML was featured by elevated exhausted immune signaling and inflammatory CAFs infiltration, whereas NML was featured with myofibroblastic CAFs infiltration. The exocrine-like (EL) subtype was high in exocrine signals, while the pure classical-like (PCL) subtype lacked immunocytes infiltration. The quiescent-like (QL) subtype had diminished metabolic signaling and high infiltration of NK cells. SBL, IML and NML were enriched in innate anti-PD-1 resistance signatures. In sum, this MSOP depicts a vivid cell-to-molecular atlas of the tumor microenvironment of PDA and might facilitate to design a precise combination of therapies that target immunity, metabolism and stroma.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico , Transducción de Señal , Microambiente Tumoral/genética
3.
Small ; 19(5): e2204852, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464630

RESUMEN

The repair of bone defects caused by osteosarcoma resection remains a clinical challenge because of the tumor recurrence and bacterial infection. Combining tumor and bacterial therapy with bone regeneration properties in bone implants is a promising strategy for the treatment of osteosarcoma. Here, a layer of MgO/FeOx nanosheet is constructed on the Ti implant to prevent tumor recurrence and bacterial infection, while simultaneously accelerating bone formation. This MgO/FeOx double metal oxide demonstrates good peroxidase activity to catalyze H2 O2 , which is rich in tumor microenvironment, to form reactive oxygen species (ROS), and shows good photothermal conversion capacity to produce photothermal effect, thus synergistically killing tumor cells and eliminating tumor tissue. In addition, it generates a local alkaline surface microenvironment to inhibit the energy metabolism of bacteria to enhance the photothermal antibacterial effect. Furthermore, benefiting from the generation of a Mg ion-containing alkaline microenvironment, this MgO/FeOx film can promote the osteogenic differentiation of osteoblast and angiogenesis of vascular endothelial cells in vitro as well as accelerated bone formation in vivo. This study proposes a multifunctional platform for integrating tumor and bacterial therapy and bone regeneration, which has good application prospects for the treatment of osteosarcoma.


Asunto(s)
Infecciones Bacterianas , Neoplasias Óseas , Osteosarcoma , Humanos , Titanio/farmacología , Osteogénesis , Óxido de Magnesio , Células Endoteliales , Recurrencia Local de Neoplasia , Regeneración Ósea , Osteosarcoma/terapia , Neoplasias Óseas/terapia , Microambiente Tumoral
4.
Mol Psychiatry ; 27(12): 5195-5205, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36065016

RESUMEN

Antipsychotic-induced metabolic syndrome (APs-induced Mets) is the most common adverse drug reaction, which affects more than 60% of the psychiatric patients. Although the etiology of APs-induced Mets has been extensively investigated, there is a lack of integrated analysis of the genetic and epigenetic factors. In this study, we performed genome-wide, whole-exome sequencing (WES) and epigenome-wide association studies in schizophrenia (SCZ) patients with or without APs-induced Mets to find the underlying mechanisms, followed by in vitro and in vivo functional validations. By population-based omics analysis, we revealed that rare functional variants across in the leptin and peroxisome proliferator-activated receptors (PPARs) gene sets were imbalanced with rare functional variants across the APs-induced Mets and Non-Mets cohort. Besides, we discovered that APs-induced Mets are hypermethylated in ABCG1 (chr21:43642166-43642366, adjusted P < 0.05) than Non-Mets, and hypermethylation of this area was associated with higher TC (total cholesterol) and TG (triglycerides) levels in HepG2 cells. Candidate genes from omics studies were furtherly screened in C. elegans and 17 gene have been verified to associated with olanzapine (OLA) induced fat deposit. Among them, several genes were expressed differentially in Mets cohort and APs-induced in vitro/in vivo models compared to controls, demonstrating the validity of omics study. Overexpression one of the most significant gene, PTPN11, exhibited compromised glucose responses and insulin resistance. Pharmacologic inhibition of PTPN11 protected HepG2 cell from APs-induced insulin resistance. These findings provide important insights into our understanding of the mechanism of the APs-induced Mets.


Asunto(s)
Antipsicóticos , Leptina , Síndrome Metabólico , Receptores Activados del Proliferador del Peroxisoma , Animales , Humanos , Antipsicóticos/efectos adversos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Caenorhabditis elegans , Resistencia a la Insulina/genética , Leptina/genética , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Multiómica , Receptores Activados del Proliferador del Peroxisoma/genética
5.
Environ Res ; 205: 112571, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919961

RESUMEN

Tungsten (W) is a contaminant with health implications whose environmental behaviors are not understood well. Sorption to mineral surfaces is one of the primary processes controlling the mobility and fate of W in soils, sediments, and aquifers. However, few papers published hitherto have not yet figured out the influences of dissolved organic matter (DOM) on this process. Here, we examine W(VI) adsorption behaviors onto Al (hydr)oxide (AAH) in the presence or absence of DOM derived from plant rhizosphere, using batch experiments coupled with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The morphology and functional group analyses results show that DOM can facilitate the aggregation of AAH and block surface Al-OH groups. Coexisting DOM inhibits W(VI) adsorption onto AAH at acidic to neutral pH (4-7), and the presence of either Na + or PO43- can exert a completely different impact on W(VI) adsorption. XPS and FTIR characterizations further demonstrate surface W complexes with the Al-OH groups of AAH and carboxyl groups of DOM. There is no reduction of W(VI) during the adsorption processes, and poly-tungstate species are formed on the surface of both AAH and AAH-DOM coprecipitates. This study provides the first evidence of the roles of natural DOM on W sequestration at the mineral-water surface, which has an important implication for the prediction of the migration and bioavailability of W in natural environments.


Asunto(s)
Materia Orgánica Disuelta , Óxidos , Adsorción , Compuestos Orgánicos , Suelo
6.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1073-1078, 2021 Mar.
Artículo en Zh | MEDLINE | ID: mdl-33787099

RESUMEN

The study aiming at exploring the potassium-dissolving capacity of rhizosphere potassium-dissolving bacteria from diffe-rent sources and screen the strains with high potassium-dissolving ability, so as to lay a theoretical foundation for cultivation and quality improvement of Paris polyphylla var. yunnanensis sources. The rhizosphere soil of 10 wild and transplanted species from Yunnan, Sichuan and Guizhou provinces was used as the research object. Potassium-dissolving bacteria were isolated and purified, and their potassium-dissolving capacity was determined by flame spectrophotometry, and identified by physiological, biochemical and molecular biological methods. Twenty-six potassium-dissolving bacteria were purified and 13 were obtained from wild and transplanted strains respectively. It was found through the determination of potassium-dissolving capacity that the potassium-dissolving capacity of 26 strains was significantly different, and the mass concentration of K~+ in the fermentation broth were 1.04-2.75 mg·L~(-1), the mcentration of potassium were 0.01-1.82 mg·L~(-1). The strains were identified as Bacillus, Agrobacterium rhizome and Staphylococcus by physiological, biochemical and 16 S rDNA molecular methods, among them Bacillus amylolyticus(4 strains) was the dominant bacterium of Bacillus. The physiology and biochemistry of rhizosphere potassium-dissolving bacteria in P. polyphylla var. yunnanensis rhizosphere were diffe-rent, and the living environment were different, so the potassium-dissolving capacity also changed. Strain Y4-1 with the highest potassium decomposability was Bacillus amylolytic with a potassium increase of 1.82 mg·L~(-1). The potassium-dissolving ability and the distribution of potassium-dissolving bacteria were different in various habitats. The screening of potassium-dissolving bacteria provided a new strain for the preparation of microbial fertilizer. It is expected that B. amyloidococcus Y4-1 can be used as an ideal strain to cultivate mycorrhizal seedlings of P. polyphylla var. yunnanensis.


Asunto(s)
Liliaceae , Rizosfera , China , Paenibacillus , Potasio , Suelo
7.
Zhongguo Zhong Yao Za Zhi ; 46(4): 915-922, 2021 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33645097

RESUMEN

The wild resources of Paris polyphylla var. yunnanensis, a secondary endangered medicinal plant, are severely scarce. Introduction and cultivation can alleviate market demand. To screen phosphatolytic bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis and provide data support for the development of high-efficiency microbial fertilizer, in this study, the dilution plate coating method was used to isolate and screen the phosphorus solubilizing bacteria with the ability of mineralizing organic phosphorus from the rhizosphere soil of wild and transplanted varieties of P. polyphylla var. yunnanensis in 10 different locations in Yunnan, Sichuan and Guizhou. After separation and purification, the phosphatolytic capacity was analyzed by qualitative and quantitative analysis. Combined with physiological and biochemical experiments, the strains were identified using 16 S rDNA sequencing analysis. Forty one strains were selected from the rhizosphere soil of P. polyphylla var. yunnanensis from 10 different habitats. Among them, 21 strains were obtained from the rhizosphere soil of the wild variety P. polyphylla var. yunnanensis and 20 strains were obtained from the rhizosphere soil of the transplanted variety. And significance analysis found that 41 organophosphate solubilizing strains had significant differences in their ability to solubilize phosphorus. The amount of phosphate solubilizing was 0.08-67.61 mg·L~(-1), the pH value was between 4.27 and 6.82. The phosphatolytic amount of strain Y3-5 was 67.61 mg·L~(-1), and the phosphorus increase amount was 57.57 mg·L~(-1). All 41 strains were identified as Gram-positive Bacillus. Combining physiological characteristic and phylogenetic trees, Bacillus mobilis Y3-5 was finally selected as the candidate rhizosphere phosphatolytic bacteria of P. polyphylla var. yunnanensis. The distribution of phosphorus solubilizing bacteria in the rhizosphere soil of P. polyphylla var. yunnanensis was different, and there were significant diffe-rences in phosphorus solubility. Organophosphate-dissolving strain Y3-5 is expected to be a candidate strain of P. polyphylla var. yunnanensis microbial fertilizer.


Asunto(s)
Liliaceae , Bacillus , Bacterias/genética , China , Filogenia
8.
Ecotoxicol Environ Saf ; 197: 110625, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32302863

RESUMEN

Due to the potential of release and accumulation in the environment, nanoplastics have attracted an increasing attention. In this study, we investigated the effect of exposure to nanopolystyrene (30 nm) in nematode Caenorhabditis elegans after the fungal infection. After Candida albicans infection, exposure to nanopolystyrene (10 and 100 µg/L) for 24-h could cause the more severe toxicity on lifespan and locomotion behavior compared with fungal infection alone. The more severe activation of oxidative stress and suppression of SOD-3:GFP expression and mitochondrial unfolded protein response (mt UPR) were associated with this observed toxicity enhancement induced by nanopolystyrene exposure. Moreover, the more severe C. albicans colony formation and suppression of innate immune response as indicated by the alteration in expression of anti-microbial genes (abf-2, cnc-4, cnc-7, and fipr-22/23) further contributed to the formation of this toxicity enhancement induced by nanopolystyrene exposure. Our results demonstrated that short-term exposure to nanopolystyrene in the range of µg/L potentially enhances the adverse effects of fungal infection on organisms.


Asunto(s)
Caenorhabditis elegans , Candidiasis/inducido químicamente , Locomoción/efectos de los fármacos , Longevidad/efectos de los fármacos , Poliestirenos/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/metabolismo , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Estrés Oxidativo/efectos de los fármacos
9.
Stroke ; 50(6): 1330-1338, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31084332

RESUMEN

Background and Purpose- Ischemic stroke, a complex and heterogeneous disease, is the second leading cause of death worldwide. Genetic factors and epigenetic modification contribute to the pathogenesis of this disease. However, the effects of epigenetic factors on this disease have not been systematically investigated. Our study was designed to identify methylation alterations in large-artery atherosclerotic stroke. Methods- We conducted an epigenome-wide association analysis of large-artery atherosclerotic stroke using an Infinium HumanMethylation450 array (cases:controls=12:12), and the differentially methylated loci were validated in 2 cohorts (cases:controls, 110:122 and 191:191, respectively) using a Sequenom EpiTYPER assay. Results- In the screening stage, 1012 differentially methylated CpG sites annotated in 672 genes were found to be significantly associated with large-artery atherosclerotic stroke (mean methylation difference >5%, P<0.01). Disease, Gene Ontology, and pathway analysis highlighted the enrichment of these differentially methylated genes in cardiovascular, metabolic, neurological and immune-related functional gene clusters ( P<0.05). We identified a differentially methylated region in the promoter of a humanin gene ( MTRNR2L8, mean methylation difference=-13.01%, P=8.86×10-14). We constructed a diagnostic prediction model that was based on the mean number of significantly changed CpG loci in MTRNR2L8 and showed high diagnostic specificity and sensitivity ( P<0.0001, area under the curve=0.774). Conclusions- Together, these findings demonstrate that DNA methylation plays an important role in large-artery atherosclerotic stroke and that methylation of MTRNR2L8 is a potential therapeutic target and diagnostic biomarker for stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Arterias Cerebrales/metabolismo , Metilación de ADN , Epigenoma , Sitios Genéticos , Arteriosclerosis Intracraneal/metabolismo , Accidente Cerebrovascular/metabolismo , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Arterias Cerebrales/patología , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Arteriosclerosis Intracraneal/genética , Arteriosclerosis Intracraneal/patología , Masculino , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
10.
Biochem Biophys Res Commun ; 513(3): 675-680, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30982580

RESUMEN

Streptococcus pneumoniae is a pathogenic bacterium that can cause severe invasive diseases, such as pneumonia, otitis media and meningitis. The pro-inflammatory cytokine, IL-1ß, has been reported to play important role in host defense against S. pneumoniae. The mechanism of IL-1ß maturation and secretion in macrophages has been well studied. However, the precise mechanism of IL-1ß processing within neutrophils upon S. pneumoniae infection remains unclear. In this study, mouse peritoneal neutrophils from C57BL/6 WT and inflammasome components knockout mice were infected by S. pneumoniae in vitro. The results showed that NLRP3 inflammasome is critically involved in neutrophil IL-1ß secretion, while the AIM2 and NLRC4 inflammasomes were dispensable. Moreover, the upstream kinase, JNK, modulates ASC oligomerization and consequent caspase-1 activation and IL-1ß secretion. Additionally, neutrophil serine proteases also participate in IL-1ß secretion by mediating ASC oligomerization and caspase-1 activation. Taken together, these findings indicated that both the NLRP3 inflammasome-related pathway and neutrophil serine protease mediate IL-1ß processing upon S. pneumoniae infection.


Asunto(s)
Caspasa 1/inmunología , Interleucina-1beta/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Infecciones Neumocócicas/inmunología , Serina Proteasas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD/inmunología , Células Cultivadas , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/virología , Infecciones Neumocócicas/virología
11.
Ecotoxicol Environ Saf ; 183: 109568, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31437729

RESUMEN

We employed nematode Caenorhabditis elegans to determine the combinational effect between nanopolystyrene at predicted environmental concentration and microcystin-LR (MC-LR). Prolonged exposure to nanopolystyrene (1 µg/L) increased MC-LR (0.1 µg/L) toxicity in reducing brood size and locomotion behavior and in inducing oxidative stress. Moreover, the adsorption of MC-LR by nanopolystyrene particles played an important role in inducing the enhancement in MC-LR toxicity by nanopolystyrene particles. Additionally, only exposure to resuspension of nanopolystyrene (1 µg/L) caused the increased intestinal permeability in MC-LR (0.1 µg/L) exposed nematodes. Our data indicates the potential of nanopolystyrene at predicted environmental concentration in enhancing MC-LR toxicity on environmental organisms.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Intestinos/efectos de los fármacos , Microcistinas/toxicidad , Nanoestructuras/toxicidad , Poliestirenos/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Relación Dosis-Respuesta a Droga , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Locomoción/efectos de los fármacos , Toxinas Marinas , Microcistinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Permeabilidad
12.
Anal Chem ; 90(3): 2126-2133, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29298041

RESUMEN

We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and ß-carotene (ß-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to ß-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of ß-Car, kΔE is shown to be most sensitive for ß-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for ß-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or ß-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.


Asunto(s)
Antioxidantes/química , Clorofila A/química , Fármacos Fotosensibilizantes/química , Liposomas Unilamelares/química , beta Caroteno/química , Clorofila A/efectos de la radiación , Difusión , Luz , Estrés Oxidativo/efectos de la radiación , Fosfatidilcolinas/química , Fármacos Fotosensibilizantes/efectos de la radiación , Oxígeno Singlete/química , Glycine max/química , Liposomas Unilamelares/efectos de la radiación
13.
J Eukaryot Microbiol ; 65(1): 93-103, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28691191

RESUMEN

Manganese superoxide dismutase (MnSOD) is a key enzyme in the protection of cells from oxidative stress. A tandem duplication of the MnSOD gene (NbMnSOD1 and NbMnSOD2) in the genome of Nosema bombycis, a parasite of the silkworm Bombyx mori, was previously identified. Here, we compare the protein structures of NbMnSOD1 and NbMnSOD2 and characterize these two proteins in terms of cellular localization, timing of transcription, protein structure, and enzyme activity. Despite a similarity in the primary sequence of NbMnSOD1 and NbMnSOD2, the latter shows a remarkable degree of amino acid sequence difference on the protein's surface and in the active site, where there is a substitution of a phenylalanine for a histidine in NbMnSOD2. Immuno-electron microscopy demonstrates that NbMnSOD1 is present in the cytosol of mature spores, whereas NbMnSOD2 is localized on the polar tube and the spore wall. Immunofluorescence confirms the localization of NbMnSOD2 on the polar tube of the germinated spore. Quantitative measurement of gene expression (qRT-PCR) demonstrates production of both alleles during the first day of infection followed by a dramatic decrease during the second to fourth day of infection. From the fifth day onward, the two alleles show a complementary pattern of expression. The qRT-PCR of the host manganese superoxide dismutase (BmMnSOD) shows a notable increase in transcription upon infection, leading to a three-fold spike by the first day of infection, followed by a decrease in transcription. Measurement of overall MnSOD activity shows a similar peak at day 1 followed by a decrease to a constant rate of enzyme activity. The differences in cellular localization and pattern of gene expression of NbMnSOD2 compared to NbMnSOD1, as well as the differences in protein structure seen for NbMnSOD2 compared to other microsporidial MnSODs, strongly suggest a unique, recently evolved role for NbMnSOD2.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/genética , Duplicación de Gen , Nosema/genética , Estrés Oxidativo , Superóxido Dismutasa/genética , Proteínas Fúngicas/metabolismo , Nosema/enzimología , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Superóxido Dismutasa/metabolismo
14.
Exp Parasitol ; 187: 93-100, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29522765

RESUMEN

Microsporidia are highly specialized obligate intracellular, spore forming divergent fungi with a wide variety host range that includes most vertebrates and invertebrates. The resistant spores are surrounded by a rigid cell wall which consists of three layers: the electron-lucent chitin and protein inner endospore, the outer-electron-dense and mainly proteinaceous exospore and plasma membrane. Interestingly, microsporidia owns a special invasion organelle, called polar tube, coiled within the interior of the spore wall and attached to anchoring disk at the anterior end of spore. Spore wall and polar tube are the major apparatuses for mature spores adhering and infecting to the host cells. In this review, we summarize the research advances in spore wall proteins (SWPs) related to spore adherence and infection, and SWPs and deproteinated chitin spore coats (DCSCs) interaction associated with SWPs deposit processes and spore wall assembly. Furthermore, we highlight the SWPs-polar tube proteins (PTPs) interaction correlated to polar tube orderly orientation, arrangement and anchorage to anchoring disk. Based on results obtained, it is helpful to improve understanding of the spore wall assembly and polar tube orderly arrangement mechanisms and molecular pathogenesis of microsporidia infection. Also, such information will provide a basis for developing effective control strategies against microporidia.


Asunto(s)
Proteínas Fúngicas/fisiología , Microsporidios/fisiología , Animales , Pared Celular/química , Pared Celular/fisiología , Quitina/química , Quitina/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Microsporidios/crecimiento & desarrollo , Esporas Fúngicas/química , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/fisiología
15.
Ecotoxicol Environ Saf ; 163: 223-229, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30055387

RESUMEN

Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.


Asunto(s)
Cadmio/metabolismo , Delftia/metabolismo , Grano Comestible/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Biodegradación Ambiental , Biomasa , China , Grano Comestible/crecimiento & desarrollo , Metales Pesados , Oryza/crecimiento & desarrollo
16.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322061

RESUMEN

Solanum is one of the largest genera, including two important crops-potato (Solanum tuberosum) and tomato (Solanum lycopersicum). In this study we compared the chloroplast codon usage bias (CUB) among 12 Solanum species, between photosynthesis-related genes (Photo-genes) and genetic system-related genes (Genet-genes), and between cultivated species and wild relatives. The Photo-genes encode proteins for photosystems, the photosynthetic electron transport chain, and RuBisCO, while the Genet-genes encode proteins for ribosomal subunits, RNA polymerases, and maturases. The following findings about the Solanum chloroplast genome CUB were obtained: (1) the nucleotide composition, gene expression, and selective pressure are identified as the main factors affecting chloroplast CUB; (2) all these 12 chloroplast genomes prefer A/U over G/C and pyrimidines over purines at the third-base of codons; (3) Photo-genes have higher codon adaptation indexes than Genet-genes, indicative of a higher gene expression level and a stronger adaptation of Photo-genes; (4) gene function is the primary factor affecting CUB of Photo-genes but not Genet-genes; (5) Photo-genes prefer pyrimidine over purine, whereas Genet-genes favor purine over pyrimidine, at the third position of codons; (6) Photo-genes are mainly affected by the selective pressure, whereas Genet-genes are under the underlying mutational bias; (7) S. tuberosum is more similar with Solanum commersonii than with Solanum bulbocastanum; (8) S. lycopersicum is greatly different from the analyzed seven wild relatives; (9) the CUB in codons for valine, aspartic acid, and threonine are the same between the two crop species, S. tuberosum and S. lycopersicum. These findings suggest that the chloroplast CUB contributed to the differential requirement of gene expression activity and function between Photo-genes and Genet-genes and to the performance of cultivated potato and tomato.


Asunto(s)
Genoma del Cloroplasto , Proteínas de Plantas/genética , Solanum/genética , Composición de Base , Codón , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Filogenia , Selección Genética , Análisis de Secuencia de ADN
17.
Physiol Mol Biol Plants ; 24(3): 455-463, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29692553

RESUMEN

Haloxylon ammodendron plays an important role in maintaining the structure and function of the entire ecosystem where it grows. No suitable reference genes have been reported in H. ammodendron plants to date. In this study, a total of 8 reference genes (18S, ACT1, ACT7, UBC18, TUA5, GAPDH, EF-1α and UBQ10) were selected from the available trancriptome database, and the expression stability of these 8 candidate genes was validated under different abiotic stress with three different statistical algorithms (geNorm, NormFinder and BestKeeper). The results produced from different models were in agreement with each other essentially: 18S and TUA5 were the most stable genes under drought stress, 18S, the most stable gene under heat stress and mechanical damage, ACT7 and UBC18, stable under salt stress while TUA5 and GAPDH expressed constantly under mechanical damage, and ACT1 expressed steadily under cold conditions. Expression profiles of several stress response genes, including FT-5, FT-9, DREB2A and DREB2C, were further confirmed with various candidate reference genes. None of the candidate genes showed a constant expression among all tested samples. Hence, it's essential to use more than one reference gene in order to guarantee the accuracy of quantitative real-time PCR. The results of this study will contribute to the accuracy and reliability in transcripts quantification, which is of significance to transcription-based studies and applications in this important shrub H. ammodendron.

18.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28630064

RESUMEN

Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, is a pore-forming cytolysin that modulates host innate responses contributing to host defense against and pathogenesis of pneumococcal infections. Interleukin-1α (IL-1α) has been shown to be involved in tissue damage in a pneumococcal pneumonia model; however, the mechanism by which this cytokine is produced during S. pneumoniae infection remains unclear. In this study, we examined the role of PLY in IL-1α production. Although the strains induced similar levels of pro-IL-1α expression, wild-type S. pneumoniae D39, but not a deletion mutant of the ply gene (Δply), induced the secretion of mature IL-1α from host macrophages, suggesting that PLY is critical for the maturation and secretion of IL-1α during S. pneumoniae infection. Further experiments with calcium chelators and calpain inhibitors indicated that extracellular calcium ions and calpains (calcium-dependent proteases) facilitated the maturation and secretion of IL-1α from D39-infected macrophages. Moreover, we found that PLY plays a critical role in calcium influx and calpain activation, as elevated intracellular calcium levels and the degradation of the calpain substrate α-fodrin were detected in macrophages infected with D39 but not the Δply strain. These results suggested that PLY induces the influx of calcium in S. pneumoniae-infected macrophages, followed by calpain activation and subsequent IL-1α maturation and secretion.


Asunto(s)
Calpaína/metabolismo , Interacciones Huésped-Patógeno , Interleucina-1alfa/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Estreptolisinas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Femenino , Ratones Endogámicos C57BL
19.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28031263

RESUMEN

All microsporidia possess a unique, highly specialized invasion mechanism that involves the polar tube and spore wall. The interaction between spore wall proteins (SWPs) and polar tube proteins (PTPs) in the formation, arrangement, orderly orientation, and function of the polar tube and spore wall remains to be determined. This study was undertaken to examine the protein interactions of Nosema bombycis SWP7 (NbSWP7), NbSWP9, and PTPs. Coimmunoprecipitation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and yeast two-hybrid data demonstrated that NbSWP9, but not NbSWP7, interacts with NbPTP1 and NbPTP2. Furthermore, immunoelectron microscopy (IEM) showed that NbSWP9 was localized mainly in the developing polar tube of sporoblasts, while NbSWP7 was found randomly in the cytoplasm. However, both NbSWP9 and NbSWP7 were located in the polar tube and spore wall of N. bombycis mature spores. The reason why NbSWP7 was localized to the polar tube may be due to the interaction between NbSWP9 and NbSWP7. Interestingly, the majority of NbSWP9, but not NbSWP7, accumulated in the beginning part of the extruded polar tube and the ruptured spore wall called the anchoring disk (AD) when the mature spores germinated under weak-alkaline environmental stimulation. Additionally, anti-NbSWP9 antibody reduced spore germination in a dose-dependent manner. In conclusion, our study further confirmed that NbSWP9 is a scaffolding protein that not only anchors and holds the polar tube but also tethers the polar tube to the spore wall.


Asunto(s)
Proteínas Fúngicas/metabolismo , Nosema/fisiología , Esporas Fúngicas , Pared Celular/metabolismo , Nosema/ultraestructura , Unión Proteica
20.
Environ Sci Pollut Res Int ; 31(10): 14388-14405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38289550

RESUMEN

Dissolved organic matter (DOM) is a pivotal component of the biogeochemical cycles and can combine with metal ions through chelation or complexation. Understanding this process is crucial for tracing metal solubility, mobility, and bioavailability. Fluorescence excitation emission matrix (EEM) and parallel factor analysis (PARAFAC) has emerged as a popular tool in deciphering DOM-metal interactions. In this review, we primarily discuss the advantages of EEM-PARAFAC compared with other algorithms and its main limitations in studying DOM-metal binding, including restrictions in spectral considerations, mathematical assumptions, and experimental procedures, as well as how to overcome these constraints and shortcomings. We summarize the principles of EEM to uncover DOM-metal association, including why fluorescence gets quenched and some potential mechanisms that affect the accuracy of fluorescence quenching. Lastly, we review some significant and innovative research, including the application of 2D-COS in DOM-metal binding analysis, hoping to provide a fresh perspective for possible future hotspots of study. We argue the expansion of EEM applications to a broader range of areas related to natural organic matter. This extension would facilitate our exploration of the mobility and fate of metals in the environment.


Asunto(s)
Materia Orgánica Disuelta , Oligoelementos , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia/métodos , Oligoelementos/análisis , Metales , Análisis Factorial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA