Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 562(7727): 444-447, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283140

RESUMEN

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/ultraestructura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
2.
BMC Microbiol ; 18(1): 14, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466942

RESUMEN

BACKGROUND: Rhodotorula toruloides is an outstanding producer of lipids and carotenoids. Currently, information on the key metabolic pathways and their molecular basis of regulation remains scarce, severely limiting efforts to engineer it as an industrial host. RESULTS: We have adapted Agrobacterium tumefaciens-mediated transformation (ATMT) as a gene-tagging tool for the identification of novel genes in R. toruloides. Multiple factors affecting transformation efficiency in several species in the Pucciniomycotina subphylum were optimized. The Agrobacterium transfer DNA (T-DNA) showed predominantly single-copy chromosomal integrations in R. toruloides, which were trackable by high efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). To demonstrate the application of random T-DNA insertions for strain improvement and gene hunting, 3 T-DNA insertional libraries were screened against cerulenin, nile red and tetrazolium violet respectively, resulting in the identification of 22 mutants with obvious phenotypes in fatty acid or lipid metabolism. Similarly, 5 carotenoid biosynthetic mutants were obtained through visual screening of the transformants. To further validate the gene tagging strategy, one of the carotenoid production mutants, RAM5, was analyzed in detail. The mutant had a T-DNA inserted at the putative phytoene desaturase gene CAR1. Deletion of CAR1 by homologous recombination led to a phenotype similar to RAM5 and it could be genetically complemented by re-introduction of the wild-type CAR1 genome sequence. CONCLUSIONS: T-DNA insertional mutagenesis is an efficient forward genetic tool for gene discovery in R. toruloides and related oleaginous yeast species. It is also valuable for metabolic engineering in these hosts. Further analysis of the 27 mutants identified in this study should augment our knowledge of the lipid and carotenoid biosynthesis, which may be exploited for oil and isoprenoid metabolic engineering.


Asunto(s)
Carotenoides/genética , Lípidos/genética , Redes y Vías Metabólicas/genética , Mutagénesis Insercional , Rhodotorula/genética , Agrobacterium tumefaciens/genética , Basidiomycota/genética , Carotenoides/biosíntesis , ADN Bacteriano/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Recombinación Homóloga , Lípidos/biosíntesis , Ingeniería Metabólica/métodos , Fenotipo , Transformación Genética
3.
BMC Microbiol ; 14: 50, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25188820

RESUMEN

BACKGROUND: Rhodosporidium toruloides is a ß-carotenoid accumulating, oleaginous yeast that has great biotechnological potential. The lack of reliable and efficient genetic manipulation tools have been a major hurdle blocking its adoption as a biotechnology platform. RESULTS: We report for the first time the development of a highly efficient targeted gene deletion method in R. toruloides ATCC 10657 via Agrobacterium tumefaciens-mediated transformation. To further improve targeting frequency, the KU70 and KU80 homologs in R. toruloides were isolated and characterized in detail. A KU70-deficient mutant (∆ku70e) generated with the hygromycin selection cassette removed by the Cre-loxP recombination system showed a dramatically improved targeted gene deletion frequency, with over 90% of the transformants being true knockouts when homology sequence length of at least 1 kb was used. Successful gene targeting could be made with homologous flanking sequences as short as 100 bp in the ∆ku70e strain. KU70 deficiency did not perturb cell growth although an elevated sensitivity to DNA mutagenic agents was observed. Compared to the other well-known oleaginous yeast, Yarrowia lipolytica, R. toruloides KU70/KU80 genes contain much higher density of introns and are the most GC-rich KU70/KU80 genes reported. CONCLUSIONS: The KU70-deficient mutant generated herein was effective in improving gene deletion frequency and allowed shorter homology sequences to be used for gene targeting. It retained the key oleaginous and fast growing features of R. toruloides. The strain should facilitate both fundamental and applied studies in this important yeast, with the approaches taken here likely to be applicable in other species in subphylum Pucciniomycotina.


Asunto(s)
Basidiomycota/genética , Eliminación de Gen , Marcación de Gen/métodos , Genética Microbiana/métodos , Agrobacterium tumefaciens/genética , ADN de Hongos/química , ADN de Hongos/genética , Vectores Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Transformación Genética
4.
Biotechnol Lett ; 36(6): 1309-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24563317

RESUMEN

Ustilago scitaminea is the causal agent of sugar-cane smut disease. There is, however, no genetic transformation method for it. Here we report the development of an efficient mutagenesis method based on Agrobacterium tumefaciens-mediated transformation. To improve transformation efficiency, a range of conditions, including the codon-usage preference of the selection marker gene, promoters and the culture conditions for transformation were optimized. A strong promoter to drive marker gene expression, optimized codon usage of selection marker gene, controlled water content and pH of co-culture medium were critical factors affecting transformation efficiency. Our findings provide a useful tool for genetic analysis of this important plant pathogen.


Asunto(s)
Agrobacterium tumefaciens/crecimiento & desarrollo , Agrobacterium tumefaciens/genética , Técnicas de Transferencia de Gen , Selección Genética , Ustilago/crecimiento & desarrollo , Ustilago/genética , Transformación Genética
5.
Appl Microbiol Biotechnol ; 97(2): 719-29, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22722909

RESUMEN

The oleaginous yeast Rhodosporidium toruloides, which belongs to the Pucciniomycotina subphylum in the Basidiomycota, has attracted strong interest in the biofuel community recently due to its ability to accumulate more than 60% of dry biomass as lipid under high-density fermentation. A 3,543-nucleotide (nt) DNA fragment of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD1) was isolated from R. toruloides ATCC 10657 and characterized in details. The 1,038-nt mRNA derived from seven exons encodes an open reading frame (ORF) of 345 amino acids that shows high identity (80%) to the Ustilago maydis homolog. Notably, the ORF is composed of codons strongly biased towards cytosine at the Wobble position. GPD1 is transcriptionally regulated by temperature shock, osmotic stress, and carbon source. Nested deletion analysis of the GPD1 promoter by GFP reporter assay revealed that two regions, -975 to -1,270 and -1,270 to -1,429, upstream from the translational start site of GPD1 were important for responses to various stress stimuli. Interestingly, a 176-bp short fragment maintained 42.2% promoter activity of the 795-bp version in U. maydis whereas it was reduced to 17.4% in R. toruloides. The GPD1 promoter drove strong expression of a codon-optimized enhanced green fluorescent protein gene (RtGFP) and a codon-optimized hygromycin phosphotransferase gene (hpt-3), which was critical for Agrobacterium tumefaciens-mediated transformation in R. toruloides.


Asunto(s)
Basidiomycota/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Agrobacterium tumefaciens/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Transformación Genética/genética
6.
Nat Commun ; 12(1): 5207, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471127

RESUMEN

Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Escherichia coli Uropatógena/metabolismo , Microscopía por Crioelectrón , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Escherichia coli Uropatógena/genética
7.
Neural Regen Res ; 8(33): 3107-15, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25206631

RESUMEN

Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that specifically recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifically to human amyloid-beta 42 tetramer and nonamer, but not the monomer or high molecular weight oligomers. This study successfully constructed a human phage display library and screened a single-domain antibody that specifically recognized amyloid-beta 42 oligomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA