Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Opt Express ; 32(11): 19746-19756, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859102

RESUMEN

Metallic nanoparticle-over-mirror (NPOM) represents as a versatile plasmonic configuration for surface enhanced spectroscopy, sensing and light-emitting metasurfaces. However, experimentally identifying the high-order localized surface plasmon modes in NPOM, especially for the best plasmonic material silver, is often hindered by the small scattering cross-section of high-order plasmon modes and the poor reproducibility of the spectra across different NPOMs, resulted from the polyhedral morphology of the colloidal nanoparticles or the rough surface of deposited polycrystalline metals. In this study, we identify the high-order localized surface plasmon modes in silver NPOM by using differential reflection spectroscopy. We achieved reproducible single-particle absorption spectra by constructing uniform NPOM consisting of silver nanospheres, single-crystallized silver microplates, and a self-assembled monolayer of 1,10-decanedithiol. For comparison, silver NPOM created from typical polycrystalline films exhibits significant spectral fluctuations, even when employing template stripping methods to minimize the film roughness. Identifying high-order plasmon modes in the NPOM configuration offers a pathway to construct high-quality plasmonic substrates for applications such as colloidal metasurface, surface-enhanced Raman spectroscopy, fluorescence, or infrared absorption.

2.
Nano Lett ; 23(2): 444-450, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36595223

RESUMEN

We unambiguously extract the individual decay channels of a coupled plasmon-exciton system by using correlated single-particle absorption and scattering measurements. A remarkable difference in the two channels is present─clear Rabi splitting in the plasmon channel but no Rabi splitting in the exciton channel. Discordance in the absorption and scattering spectra are mainly originated from the distinct contributions of plasmon and exciton channels in the absorption and scattering process. Our findings provide insights into plasmon-exciton interaction in an open cavity and can impact the design of plexcitonic devices for ultrafast nonlinear nanophotonics.

3.
Geophys Res Lett ; 48(2): 2020GL091611, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33612876

RESUMEN

Air pollution in megacities represents one of the greatest environmental challenges. Our observed results show that the dramatic NOx decrease (77%) led to significant O3 increases (a factor of 2) during the COVID-19 lockdown in megacity Hangzhou, China. Model simulations further demonstrate large increases of daytime OH and HO2 radicals and nighttime NO3 radical, which can promote the gas-phase reaction and nocturnal multiphase chemistry. Therefore, enhanced NO3 - and SO4 2- formation was observed during the COVID-19 lockdown because of the enhanced oxidizing capacity. The PM2.5 decrease was only partially offset by enhanced aerosol formation with its reduction reaching 50%. In particular, NO3 - decreased largely by 68%. PM2.5 chemical analysis reveals that vehicular emissions mainly contributed to PM2.5 under normal conditions in Hangzhou. Whereas, stationary sources dominated the residual PM2.5 during the COVID-19 lockdown. This study provides evidence that large reductions in vehicular emissions can effectively mitigate air pollution in megacities.

4.
Gondwana Res ; 97: 138-144, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35721257

RESUMEN

Iron (Fe) in the atmosphere can affect atmospheric chemical processes and human health. When deposited into oceans, it can further influence phytoplankton growth. These roles of Fe fundamentally depend on its concentration and solubility. However, the sources of aerosol Fe and controlling factors of Fe solubility in megacities remain poorly understood. The outbreak of the COVID-19 pandemic causes large changes in human activities, which provides a unique opportunity to answer these key issues. Field observations were conducted before, during, and after the COVID-19 lockdown in Hangzhou, China. Our results show that in the COVID-19 lockdown stage, the concentrations of total Fe (FeT, 75.0 ng m-3) and soluble Fe (FeS, 5.1 ng m-3) in PM2.5 decreased by 78% and 62%, respectively, compared with those (FeT 344.7 ng m-3, FeS 13.5 ng m-3) in the pre-lockdown stage. The sharp reduction (81%) in on-road vehicles was most responsible for the aerosol Fe decrease. Surprisingly, the Fe solubility increased by a factor of 1.9, from 4.2% in the pre-lockdown stage to 7.8% in the COVID-19 lockdown stage. We found that the atmospheric oxidizing capacity was enhanced after lockdown restrictions were implemented, which promoted the formation of more acidic species and further enhanced the dissolution of aerosol Fe.

5.
Sci Total Environ ; 922: 171295, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417501

RESUMEN

Megacity Hangzhou, located in eastern China, has experienced severe O3 pollution in recent years, thereby clarifying the key drivers of the formation is essential to suppress O3 deterioration. In this study, the ensemble machine learning model (EML) coupled with Shapley additive explanations (SHAP), and positive matrix factorization were used to explore the impact of various factors (including meteorology, chemical components, sources) on O3 formation during the whole period, pollution days, and typical persistent pollution events from April to October in 2021-2022. The EML model achieved better performance than the single model, with R2 values of 0.91. SHAP analysis revealed that meteorological conditions had the greatest effects on O3 variability with the contribution of 57 %-60 % for different pollution levels, and the main drivers were relative humidity and radiation. The effects of chemical factors on O3 formation presented a positive response to volatile organic compounds (VOCs) and fine particulate matter (PM2.5), and a negative response to nitrogen oxides (NOx). Oxygenated compounds (OVOCs), alkenes, and aromatic of VOCs subgroups had higher contribution; additionally, the effects of PM2.5 and NOx were also important and increased with the O3 deterioration. The impact of seven emission sources on O3 formation in Hangzhou indicated that vehicle exhaust (35 %), biomass combustion (16 %), and biogenic emissions (12 %) were the dominant drivers. However, for the O3 pollution days, the effects of biomass combustion and biogenic emissions increased. Especially in persistent pollution events with highest O3 concentrations, the magnitude of biogenic emission effect elevated significantly by 156 % compared to the whole situations. Our finding revealed that the combination of the EML model and SHAP analysis could provide a reliable method for rapid diagnosis of the cause of O3 pollution at different event scales, supporting the formulation of control measures.

6.
Chemosphere ; 247: 125768, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31962225

RESUMEN

Based on ground-based lidar and microwave radiometer observations in Hangzhou from 1 January 2013 to 31 December 2015, the monthly characteristics of diurnal extinction as well as atmospheric boundary layer (ABL) were studied. The interactions between temperature (T), humidity fields including relative humidity (RH) and specific humidity (SH) and atmospheric stratification (AS) were analyzed to discuss the meteorological factors in the Yangtze River Delta region during the study period. The top of ABLMPL varied from 0.8 km to 1.0 km throughout in January with higher extinction intensity close to the surface combined to the largest PM2.5 about 100-120 µg/m3. Then the ABLMPL could develop up to 1.5 km in the spring due to the weaker extinction during the daytime. The RH in the whole column in January and December was lower than the mean value (ranging from 5% to 20%) distributed from the ground to 3 km. From May to September, the RH anomaly profiles became positive contributed to larger extinction by strengthened the particle scattering ability. In January and December, the AS was stable from the surface to 3 km coincided with the extinction distribution; while in July and August, the gradient of Δθse decreased which favored the diffusion of particle in the air. Moreover, April and October presented turning points in the variation of θse. The humidity field reveals a stable condition in January and December which favored particles suppressed from the near surface to 3 km; the temperature field has tended towards a neutral state in most months except for February. The first change-point of the meteorological fields was found in April possibly attributable to the abnormal abrupt in the subtropical high. This study could have important reference for understanding regional air quality and governing air control.


Asunto(s)
Contaminantes Atmosféricos/análisis , Conceptos Meteorológicos , Estaciones del Año , Contaminación del Aire/análisis , China , Clima , Monitoreo del Ambiente , Humedad , Material Particulado/análisis , Ríos/química , Temperatura
7.
Sci Total Environ ; 650(Pt 2): 1846-1857, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30286352

RESUMEN

As the central part of eastern China, the Yangtze River Delta (YRD) region, with its rapid economic growth and industrial expansion, has experienced severe air quality issues. In this study, the monthly variation and interaction between aerosol direct radiative forcing (ADRF) and aerosol vertical structure during 2013-2015 over the YRD were investigated using ground-based observations from a Micro Pulse Lidar (MPL) and a CE-318 sun-photometer. Combining satellite products from MODIS and CALIPSO, and reanalysis wind fields, an integrated discussion of a biomass burning episode in Hangzhou during August 2015 was conducted by applying analysis of optical properties, planetary boundary layer (PBL), spatial-temporal and vertical distributions, backward trajectories, Potential Source Contribution Function (PSCF), and Concentration Weighted Trajectory (CWT). The results reveal that a shallower PBL coincides with higher scattering extinction at low altitude, resulting in less heating to the atmosphere and radiative forcing to the surface, which in turn further depresses the PBL. In months with a deeper PBL, the extinction coefficient decreases rapidly with altitude, showing stronger atmospheric heating effects and ADRF to the surface, facilitating the turbulence and vertical diffusion of aerosol particles, which further reduces the extinction and raises the PBL. Because of the hygroscopic growth facilitated by high relative humidity, June stands out for its high scattering extinction coefficient and relatively low PBL, and the reduced ADRF at the surface and the enhanced cooling effect on near-surface layer in turn depresses the PBL. Absorptive aerosols transported from biomass burning events located in Zhejiang, Jiangxi, and Taiwan provinces at 1.5 km, result in high ADRF efficiency for atmospheric heating. And the enhanced heating effect on near-surface layer caused by absorptive particles facilitates PBL development in August over the YRD.

8.
Huan Jing Ke Xue ; 40(4): 1604-1612, 2019 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-31087900

RESUMEN

To investigate the optical properties of aerosols in the Hangzhou region (Hangzhou, Tonglu, Jiande, and Chun'an), the aerosol optical depth (AOD), Ångström exponent (AE), single scattering albedo (SSA), and aerosol size distribution (ASD) were measured using CIMEL sun-photometers in 2012. The results showed that the annual average values of AOD440nm in Hangzhou, Tonglu, Jiande, and Chun'an were 0.94±0.16, 0.84±0.17, 0.82±0.22, and 0.71±0.20, respectively. The values generally decreased from the northeast to the southwest, and represented one of highest AOD districts in the Yangtze River Delta, China. The annual average values of AE440-870nm were 1.24±0.12, 1.19±0.17, 1.06±0.04, and 1.04±0.10, respectively, indicating that particles with small average effective radii were predominant. The relatively lower AE values in March and April were generally attributed to the long-range transport of dust aerosols from Northwest China. Obvious diurnal variations in the AOD were found in Hangzhou, Tonglu, and Jiande, but not in Chun'an. An average fine-mode effective radius of~0.15 µm was observed in spring, autumn, and winter, while a value of~0.25 µm was observed in summer, in conjunction with aerosol hygroscopic growth. An average coarse-mode effective radius of~2.94 µm was observed in summer, autumn, and winter, which was higher than the value in spring. The annual average values of SSA440nm were 0.91±0.01, 0.92±0.03, 0.92±0.02, 0.93±0.02, respectively, indicating that the particles had relatively strong to moderate absorption. Characterization of the aerosol types showed the predominance of biomass burning and urban industrial type aerosols in Hangzhou, while mixed type aerosols were observed in Tonglu, Jiande, and Chun'an.

9.
Huan Jing Ke Xue ; 39(8): 3511-3517, 2018 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-29998655

RESUMEN

To investigate the seasonal variations and sources of carbonaceous aerosols in the cities of Hangzhou and Ningbo, field PM2.5 sampling was conducted at four representative sites (two urban, one suburban, and one rural) in this region from December 2014 to November 2015. A thermal/optical carbon analyzer was employed to analyze both organic carbon (OC) and elemental carbon (EC) contents in PM2.5 by identifying eight different carbon fractions, including OC1, OC2, OC3, OC4+OPC, EC1-OPC, EC2, and EC3. Based on these fractions, OC and EC were defined as OC1+OC2+OC3+OC4+OPC and EC1+EC2+EC3-OPC, respectively; total carbon (TC) was calculated as the sum of OC and EC; and total carbonaceous aerosols (TCAs) were quantified via the sum of organic aerosols (OAs; converted from OC) and EC. The results showed the following. ①The annual average level of TC in this region was (14.3±4.1) µg·m-3, accounting for (26.2±6.5)% of the annual average PM2.5 concentration. The annual average OC and EC concentrations were (11.3±3.4) µg·m-3 and (3.0±0.9) µg·m-3, respectively. The highest TC level was observed in winter among the four seasons. ②The annual average TCA concentration in this region was (25.6±7.5) µg·m-3, contributing (42.2±10.0)% of PM2.5. In addition, secondary organic carbon (SOC) was also estimated by the commonly applied EC method. It was found that SOC contributed (41.1±5.5)% to OC on an annual average basis. ③The sources of carbonaceous aerosols were determined using the correlation between OC and EC, OC/EC mass ratio, and different carbon fraction characteristics. The annual average OC/EC ratio in this region was 4.7±1.7, which falls in the diagnostic ratio range for vehicular emissions, coal combustion, and biomass burning, indicating these sources are probably the major contributors of the regional carbonaceous aerosols. Moreover, a higher char-EC/soot-EC ratio was observed during winter and autumn at all sites, possibly implying the enhanced biomass burning activities during these two seasons.

10.
Huan Jing Ke Xue ; 39(7): 3082-3089, 2018 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-29962129

RESUMEN

In situ measurement of CO2 concentration(volume fraction) was carried out in both urban and rural areas of Hangzhou from August 2015 to September 2016. The characteristics of CO2 concentration at the urban site were compared to those at the rural site, and the factors affecting CO2 concentration in Hangzhou were analyzed via wind direction, weekday-weekend difference in CO2 concentration, and evolution of CO2 concentration during the G20 summit. The results revealed that the diurnal variation of CO2 concentration in both the urban and rural areas presented a single peak curve most of the time, which resulted from the daily evolution of plant photosynthesis/respiration and atmospheric transport conditions. The diurnal variation of the difference in CO2 concentration observed at the urban and rural sites showed a bimodal peak curve, because anthropogenic emissions played a more important role. The diurnal amplitude of CO2 concentration in rural area was higher than that in urban area in spring and summer, but lower in autumn. The seasonal variation of CO2 concentration in both the urban and rural areas showed the same trend, with higher values appearing in winter and spring and lower values in summer. The difference in CO2 concentration observed at the urban and rural sites reached its highest level in winter, and dropped to its lowest in summer. The wind direction induction of high CO2 concentration was consistent with the location of the surrounding urban areas. A weekday-weekend difference in CO2 concentration was observed in Hangzhou, especially in urban area, as traffic emissions had an impact on the weekday-weekend difference in diurnal distribution of CO2 concentration. The average volume fraction of CO2 in urban area of Hangzhou was 9.3×10-6 higher than that in rural area, and the reduction of anthropogenic emissions during the G20 summit reduced the atmospheric CO2 concentration effectively, especially in urban area.

11.
Environ Int ; 121(Pt 1): 515-522, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30292144

RESUMEN

BACKGROUND: Limited evidence is available on the health effects of particulate matter with an aerodynamic diameter of <1 µm (PM1), mainly due to the lack of its ground measurement worldwide. OBJECTIVES: To identify and examine the mortality risks and mortality burdens associated with PM1, PM2.5, and PM10 in Zhejiang province, China. METHODS: We collected daily data regarding all-cause (stratified by age and gender), cardiovascular, stroke, respiratory, and chronic obstructive pulmonary disease (COPD) mortality, and PM1, PM2.5, and PM10, from 11 cities in Zhejiang province, China during 2013 and 2017. We used a quasi-Poisson regression model to estimate city-specific associations between mortality and PM concentrations. Then we used a random-effect meta-analysis to pool the provincial estimates. To show the mortality burdens of PM1, PM2.5, and PM10, we calculated the mortality fractions and deaths attributable to these PMs. RESULTS: Daily concentrations of PM1, PM2.5, and PM10 ranged between 0-199 µg/m3, 0-218 µg/m3, and 0-254 µg/m3, respectively; Mortality effects were significant in lag 0-2 days. The relative risks for all-cause mortality were 1.0064 (95% CI: 1.0034, 1.0094), 1.0061 (95% CI: 1.0034, 1.0089), and 1.0060 (95% CI: 1.0038, 1.0083) associated with a 10 µg/m3 increase in PM1, PM2.5, and PM10, respectively. Age- and gender-stratified analysis shows that elderly people (aged 65+) and females are more sensitive to PMs. The mortality fractions of all-cause mortality were estimated to be 2.39% (95% CI: 1.28, 3.48) attributable to PM1, 2.53% (95% CI: 1.42, 3.63) attributable to PM2.5, and 3.08% (95% CI: 1.95, 4.19) attributable to PM10. The ratios of attributable cause-specific deaths for PM1/PM2.5, PM1/PM10, and PM2.5/PM10 were higher than the ratios of their respective concentrations. CONCLUSIONS: PM1, PM2.5 and PM10 are risk factors of all-cause, cardiovascular, stroke, respiratory, and COPD mortality. PM1 accounts for the vast majority of short-term PM2.5- and PM10-induced mortality. Our analyses support the notion that smaller size fractions of PM have a more toxic mortality impacts, which suggests to develop strategies to prevent and control PM1 in China, such as to foster strict regulations for automobile and industrial emissions.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Causas de Muerte , Exposición a Riesgos Ambientales , Material Particulado/toxicidad , Adolescente , Adulto , Anciano , Contaminantes Atmosféricos/análisis , Niño , Preescolar , China , Ciudades , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mortalidad , Material Particulado/análisis , Medición de Riesgo , Adulto Joven
12.
Huan Jing Ke Xue ; 38(7): 2656-2666, 2017 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-29964604

RESUMEN

The pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou were investigated by sampling and laboratory analysis of aerosol samplers in 2013. The water-soluble ions were dominant in PM2.5 and the total mass concentration was 37.5 µg·m-3, accounting for 44.4% of the PM2.5 mass concentration. Water-soluble ions were mainly composed of secondary ions(SO42-,NO3- and NH4+), which accounted for 83.4% of total ions. The highest mass concentrations of PM2.5 and major ions were observed in winter and the lowest in summer. The proportions of water-soluble ions in PM2.5 in summer and autumn were obviously higher than those in winter and spring and proportions of secondary ions in water-soluble ions were very close in each season. The contribution was the greatest to PM2.5 from secondary ions generation caused by fuel combustion and automobile exhaust. The annual average values of SOR and NOR were 0.27 and 0.15 respectively, the conversion rate of SO2 in atmosphere was greater than that of NOx. There was obvious positive correlation between SOR or NOR and humidity which indicated the important contribution of heterogeneous oxidation process to the generation of SO42- and NO3-. The annual average of[NO3-]/[SO42-] was 0.63, and the aerosol pollution was primarily affected by emissions from coal burning. In haze days, with the increase of haze pollution level, the mass concentrations of PM2.5, water-soluble ions, secondary ions as well as SOR and NOR all increased gradually, and the stable weather condition in haze days could efficiently promote the accumulation and secondary conversion of pollutants. There were obvious positive correlations between mass concentrations of PM2.5 and SNA and the atmospheric light extinction coefficient. The IMPROVE formula which was used to calculate the light extinction coefficients of different chemical components could efficiently indicate the tendency of aerosol scattering. The extinction contribution of SNA could reach 60.8%. The extinction coefficient of SNA was the highest in winter and lowest in summer, and its value and contribution proportion both increased gradually as the haze pollution level rose.

13.
Chemosphere ; 179: 316-330, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28376395

RESUMEN

To investigate the seasonal and spatial variations of ion chemistry of fine particles in Northern Zhejiang Province (NZP), China, one year-long field sampling was conducted at four representative sites (two urban, one suburb, and one rural sites) in both cities of Hangzhou and Ningbo from December 2014 to November 2015. Twelve water soluble inorganic ions (WSII) were characterized in this comprehensive study. The annual average of PM2.5 concentration in NZP as overall was 66.2 ± 37.7 µg m-3, and urban sites in NZP were observed with more severe PM2.5 pollution than the suburban and rural sites. The annual average concentration of total WSII at four sampling sites in NZP was 29.1 ± 19.9 µg m-3, dominated by SO42- (10.3 µg m-3), and followed by NO3- (8.9 µg m-3), NH4+ (6.6 µg m-3), Cl- (1.3 µg m-3) and K+ (0.7 µg m-3). Among all cations, NH4+ was the predominant neutralizing ion with the highest neutralization factor (NF), while the remaining cations showed limited neutralization capacity. The highest and lowest sulfur oxidation ratio (SOR) values in this region were found in summer and winter, respectively; while the seasonal patterns for nitrogen oxidation ratio (NOR) were opposite to that of SOR. Principal component analysis (PCA) showed that the significant sources of WSII in NZP were industrial emissions, biomass burning, and formation of secondary inorganic aerosols. In addition, contribution from transboundary transport of polluted aerosols was also confirmed from the assessment through air mass backward trajectory analysis.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Iones/química , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis , China , Iones/análisis , Nitrógeno/química , Oxidación-Reducción , Solubilidad , Azufre/química
14.
Waste Manag ; 35: 62-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25458853

RESUMEN

In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents.


Asunto(s)
Alimentación Animal , Moscas Domésticas , Estiércol , Sus scrofa , Administración de Residuos/métodos , Animales , Conservación de los Recursos Naturales , Fertilizantes , Moscas Domésticas/fisiología , Larva , Estiércol/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA