Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharmacol Res ; 177: 106125, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35149186

RESUMEN

Alcohol-induced liver injury (ALI) is associated with inflammatory responses regulated by macrophages. Activation of macrophages plays a crucial role in ALI while DNA methylation-regulated gene silencing is associated with inflammation processes in macrophages. Proline-Serine-Threonine Phosphatase Interacting Protein 2 (PSTPIP2), which belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs domain family of proteins and plays a role in macrophages. Previous studies have shown that Pstpip2 can be methylated. Herein, its expression was found to be significantly downregulated in primary liver macrophages isolated from EtOH-fed mice and EtOH-induced RAW264.7 cells. Overexpression of PSTPIP2 using liver-specific recombinant AAV serotype 9 (rAAV9)-PSTPIP2 in EtOH-fed mice dramatically alleviated liver injury and inflammatory responses. In addition, silencing of PSTPIP2 aggravated the alcohol-induced inflammatory response in vitro. Mechanistically, PSTPIP2 might affect macrophage-induced inflammatory responses by regulating the STAT1 and NF-κB signaling pathways. The downregulation of PSTPIP2 in ALI may be associated with DNA methylation. Methylation-specific PCR and western blotting analyses showed that EtOH induced abnormal DNA methylation patterns and increased the protein expression levels of DNMT1, DNMT3a, and DNMT3b. The chromatin immunoprecipitation assay showed that DNMT3a could directly bind to the Pstpip2 promoter and act as a principal regulator of PSTPIP2 expression. Moreover, silencing of DNMT3a significantly restored the EtOH-induced low expression of PSTPIP2 and inhibited EtOH-induced inflammation. Overall, these findings provide a detailed understanding of the possible functions and mechanisms of PSTPIP2 in ALI, thus providing new substantive research to elucidate the pathogenesis of ALI and investigate potential targeted treatment strategies.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , FN-kappa B , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Etanol/toxicidad , Inflamación/genética , Ratones , FN-kappa B/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
2.
J Cell Mol Med ; 24(13): 7405-7416, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32463161

RESUMEN

As an outcome of chronic liver disease, liver fibrosis involves the activation of hepatic stellate cells (HSCs) caused by a variety of chronic liver injuries. It is important to explore approaches to inhibit the activation and proliferation of HSCs for the treatment of liver fibrosis. PLK1 is overexpressed in many human tumour cells and has become a popular drug target in tumour therapy. Therefore, further study of the function of PLK1 in the cell cycle is valid. In the present study, we found that PLK1 expression was elevated in primary HSCs isolated from CCl4 -induced liver fibrosis mice and LX-2 cells stimulated with TGF-ß1. Knockdown of PLK1 inhibited α-SMA and Col1α1 expression and reduced the activation of HSCs in CCl4 -induced liver fibrosis mice and LX-2 cells stimulated with TGF-ß1. We further showed that inhibiting the expression of PLK1 reduced the proliferation of HSCs and promoted HSCs apoptosis in vivo and in vitro. Furthermore, we found that the Wnt/ß-catenin signalling pathway may be essential for PLK1-mediated HSCs activation. Together, blocking PLK1 effectively suppressed liver fibrosis by inhibiting HSC activation, which may provide a new treatment strategy for liver fibrosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Estrelladas Hepáticas/enzimología , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vía de Señalización Wnt , Animales , Apoptosis , Tetracloruro de Carbono , Línea Celular , Proliferación Celular , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Quinasa Tipo Polo 1
3.
Clin Sci (Lond) ; 134(14): 1935-1956, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32639005

RESUMEN

The regulation of macrophages during inflammatory responses is a crucial process in alcoholic liver disease (ALD) and aberrant macrophage DNA methylation is associated with inflammation. Our preliminary screening results of macrophage methylation in the present study demonstrated the zinc finger SWI2/SNF2 and MuDR (SWIM)-domain containing 3 (ZSWIM3) were hypermethylated in the 5' untranslated region (5'-UTR) region. ZSWIM3, a novel zinc finger-chelate domain of SWIM, is predicted to function in DNA-binding and protein-binding interactions. Its expression was found to be consistently decreased in macrophages isolated from livers of ethyl alcohol (EtOH)-fed mice and in EtOH+lipopolysaccharide (LPS)-induced RAW264.7 cells. Over-expression of ZSWIM3 was found to attenuate chronic+binge ethanol feeding-induced liver injury and inhibit inflammatory responses in vivo. Enforced expression of ZSWIM3 in vitro was also found to have anti-inflammatory effects. Aberrant expression of ZSWIM3 in alcohol-induced liver injury (ALI) was found to be associated with hypermethylation. Analysis of CpG prediction indicated the presence of two methylated sites in the ZSWIM3 promoter region and methylation inhibitor and DNA methyltransferases (DNMTs)-siRNA transfection were found to restore down-regulated ZSWIM3. Chromatin immunoprecipitation (ChIP) assay and molecular docking affirmed the role of DNMT 3b (DNMT3b) as a principal regulator of ZSWIM3 expression. Mechanistically, ZSWIM3 might affect inflammation by binding with tumor necrosis factor receptor-associated factor 2 (TRAF2), which further mediates the activation of the nuclear transcription factor κB (NF-κB) pathway. The present study, therefore, provides detailed insights into the possible structure and function of ZSWIM3 and thus, contributes new substantial research in the elucidation of the pathogenesis of ALI.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Macrófagos/metabolismo , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Hepatopatías Alcohólicas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , ADN Metiltransferasa 3B
4.
J Cell Physiol ; 234(9): 14709-14720, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30701547

RESUMEN

Alcoholic liver disease (ALD) is a complex process with high morbitity and can cause liver dysfunction, which contains a wide spectrum of hepatic lesions, including steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. To date, the molecular mechanisms for ALD have not been fully explored and an effective therapy is still missing. Overwhelming evidence shows dysregulation of noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), is correlated with etiopathogenesis and progress of ALD including hepatocyte damage, disrupted lipid metabolism, aggressive inflammatory responses, oxidative stress, programmed cell death, fibrosis, and epigenetic changes induced by alcohol. For example, circulating miRNA-122 is a marker of hepatocyte damage, and miRNA-155 is a potential marker of inflammation, indicating their diagnosis therapeutic potential in ALD. In addition, roles for long noncoding RNAs (lncRNAs) and circular RNAs in ALD are being uncovered. Further, circulating ncRNAs and exosome-derived ncRNAs have attracted more attention lately, suggesting a role in the prevention and treatment of ALD. This review covers the roles of ncRNAs in ALD, and the potential uses as markers for diagnosis and therapeutic options.

5.
Nat Commun ; 14(1): 4924, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582782

RESUMEN

Thermal homeostasis is vital for mammals and is controlled by brain neurocircuits. Yet, the neural pathways responsible for cold defense regulation are still unclear. Here, we found that a pathway from the lateral parabrachial nucleus (LPB) to the dorsomedial hypothalamus (DMH), which runs parallel to the canonical LPB to preoptic area (POA) pathway, is also crucial for cold defense. Together, these pathways make an equivalent and cumulative contribution, forming a parallel circuit. Specifically, activation of the LPB → DMH pathway induced strong cold-defense responses, including increases in thermogenesis of brown adipose tissue (BAT), muscle shivering, heart rate, and locomotion. Further, we identified somatostatin neurons in the LPB that target DMH to promote BAT thermogenesis. Therefore, we reveal a parallel circuit governing cold defense in mice, which enables resilience to hypothermia and provides a scalable and robust network in heat production, reshaping our understanding of neural circuit regulation of homeostatic behaviors.


Asunto(s)
Hipotermia , Termogénesis , Ratones , Animales , Termogénesis/fisiología , Área Preóptica/metabolismo , Vías Nerviosas/fisiología , Homeostasis , Hipotermia/metabolismo , Tejido Adiposo Pardo/metabolismo , Frío , Mamíferos
6.
Front Immunol ; 12: 585412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262554

RESUMEN

Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane-cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1), and C-terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.


Asunto(s)
Inflamación/genética , Inflamación/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 12/inmunología , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/genética , Humanos , Inflamación/fisiopatología , Ratones , Fosforilación , Unión Proteica , Transducción de Señal
7.
Int Immunopharmacol ; 95: 107471, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756231

RESUMEN

Alcoholic liver disease (ALD) is the most common chronic liver disease worldwide. Currently, there is no definitive treatment for alcohol-induced liver injury (ALI). Inflammatory response and oxidative stress play a crucial role in ALI. Cyclooxygenase 2 (COX-2) can be induced by inflammation and it has been reported that the enhanced expression of COX-2 in alcoholic liver injury. Rutaecarpine (RUT) was extracted from evodia rutaecarpa. RUT has a wide range of pharmacological activities. In order to increase its anti-inflammatory activity, our group introduced sulfonyl group to synthesized the 3-[2-(trifluoromethoxy)benzenesulfonamide]-rutaecarpine (3-B-RUT). In this study, we explored the protective effect of 3-B-RUT on alcoholic liver injury in vivo and in vitro and preliminarily explore its mechanism. Mice ALI model was established according to the chronic-plus-binge ethanol model. Results showed that 3-B-RUT (20 µg/kg) attenuated alcohol-induced liver injury and suppressed liver inflammation and oxidative stress, and the effect was comparable to RUT (20 mg/kg). In vitro results are consistent with in vivo results. Mechanistically, the 3-B-RUT might suppress inflammatory response and oxidative stress by regulating activation of NF-κB/COX-2 pathway. In summary, 3-B-RUT, a derivative of RUT, may be a promising clinical candidate for ALI treatment.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Alcaloides Indólicos/uso terapéutico , Hepatopatías Alcohólicas/tratamiento farmacológico , Quinazolinas/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Alcaloides Indólicos/farmacología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Hepatopatías Alcohólicas/inmunología , Hepatopatías Alcohólicas/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , FN-kappa B/inmunología , Estrés Oxidativo/efectos de los fármacos , Quinazolinas/farmacología , Células RAW 264.7
8.
Toxicol Lett ; 319: 11-21, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711802

RESUMEN

Alcoholic liver injury (ALI) is a part of alcohol-related liver diseases. These diseases include steatohepatitis, alcoholic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Accumulating data indicates that alcohol metabolism and circulating endotoxin/lipopolysaccharide (LPS) contribute to macrophage activation, which leads to the development of ALI. Protein tyrosine phosphatase 1B (PTP1B) has been shown to be involved in many tissue inflammations as well as liver fibrosis; however, the role of PTP1B in ALI is still unclear. In this study, PTP1B expression was elevated in liver tissues and primary macrophages isolated from EtOH-fed mice. Moreover, PTP1B expression was elevated in RAW264.7 cells stimulated with alcohol and LPS. Additional studies showed that silencing of PTP1B reduced the inflammatory response and expression of inflammatory cytokines such as IL-1ß, IL-6 and TNF-α, while overexpression of PTP1B induced inflammation in RAW264.7 cells. In addition, we found that NF-κB pathway was activated in RAW264.7 cells stimulated with alcohol and LPS, and PTP1B silencing or overexpression could regulate NF-κB signaling. In conclusion, this study revealed the function of PTP1B in ALI via its regulation of the NF-κB signaling pathway and may provide theoretical support for further research on ALI.


Asunto(s)
Hepatopatías Alcohólicas/genética , Activación de Macrófagos , FN-kappa B/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Transducción de Señal/genética , Animales , Depresores del Sistema Nervioso Central/farmacología , Citocinas/biosíntesis , Etanol/farmacología , Lipopolisacáridos/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 1/biosíntesis , Células RAW 264.7 , Regulación hacia Arriba
9.
Sci Adv ; 6(36)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917598

RESUMEN

Heat defense is crucial for survival and fitness. Transmission of thermosensory signals into hypothalamic thermoregulation centers represents a key layer of regulation in heat defense. Yet, how these signals are transmitted into the hypothalamus remains poorly understood. Here, we reveal that lateral parabrachial nucleus (LPB) glutamatergic prodynorphin and cholecystokinin neuron populations are progressively recruited to defend elevated body temperature. These two nonoverlapping neuron types form circuits with downstream preoptic hypothalamic neurons to inhibit the thermogenesis of brown adipose tissues (BATs) and activate tail vasodilation, respectively. Both circuits are activated by warmth and can limit fever development. The prodynorphin circuit is further required for regulating energy expenditure and body weight homeostasis. Thus, these findings establish that the genetic and functional specificity of heat defense neurons occurs as early as in the LPB and uncover categorical neuron types for encoding two heat defense variables, inhibition of BAT thermogenesis and activation of vasodilation.

10.
Int Immunopharmacol ; 75: 105671, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31377590

RESUMEN

Liver fibrosis is the representative features of liver chronic inflammation and the characteristic of early cirrhosis. To date, effective therapy for liver fibrosis is lacking. Recently, Traditional Chinese Medicine (TCM) has attracted increasing attention due to its wide pharmacological effects and more uses in clinical. Wogonin, as one major active constituent of Scutellaria radix, has been reported it plays an important role in anti-inflammatory, anti-cancer, anti-viral, anti-angiogenesis, anti-oxidant and neuro-protective effects. However, the anti-fibrotic effect of wogonin is never covered in liver. In this study, we evaluated the protect effect of wogonin in liver fibrosis. Wogonin significantly attenuated liver fibrosis both in CCl4-induced mice and TGF-ß1 activated HSCs. Meanwhile, wogonin can enhances apoptosis of TGF-ß1 activated HSC-T6 cell from rat and LX-2 cell from human detected by flow cytometry. Additionally, wogonin can largely enhances cle-caspase3, cle-caspase9 expression and the ratio of Bax/Bcl-2 in T6 cells. Pro-apoptosis effect of wogonin in vivo was further verified in situ. In conclusion, wogonin can attenuate liver fibrosis via regulating the activation and apoptosis of hepatic stellate cells, and may be an effective drug to treat and prevent liver fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Flavanonas/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Animales , Tetracloruro de Carbono , Línea Celular , Flavanonas/farmacología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratas , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA