RESUMEN
The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.
Asunto(s)
Bilophila , Humanos , Alcanosulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Azufre/metabolismo , Taurina/metabolismo , Microbioma GastrointestinalRESUMEN
An array of biologically interesting tri/difluoromethylated chromones and their heteroatom analogues were conveniently synthesized from the reaction of chromones and their heteroatom analogues with CF3SO2Na or HCF2SO2Na in the presence of tert-butyl hydroperoxide under mild conditions. A mechanistic pathway involving the generation of the electrophilic tri/difluoromethyl radical, followed with the radical substitution of chromones and their heteroatom analogues, was postulated.
RESUMEN
The application of the DMSO/SOCl2 system enabled the intramolecular cyclization/chlorination of N,N-disubstituted 2-alkynylanilines, leading to the synthesis of a series of 3-chloroindoles with moderate to good yields. Differing from the previously reported interrupted Pummerer reaction featuring the introduction of SMe moiety, the current approach adopted an alternative pathway that realized the incorporation of chlorine atom to the indole skeleton via a desulfonylative chlorocyclization process.
RESUMEN
The combining use of BnSCF2D, mCPBA and Tf2O serves as an efficient multi-component reagents system (MCRS) for the synthesis of deuteriodifluoromethylthiolated isocoumarins-1-imines/isocoumarins via intramolecular cyclization/deuteriodifluoromethylthiolation of 2-alkynylbenzamides/2-alkynylbenzoates. The approach features the generation of the crucial reactive electrophilic sulfonium salt through a sequence process involving the oxidation of BnSCF2D by mCPBA followed by Tf2O promoted activation.
RESUMEN
The removal of tetracycline from the sewage plant effluents through advanced treatment methods is key to controlling tetracycline levels in the water environment. In this study, modified quartz sands (QS) were used in a biological sand filter to remove tetracycline. The modified QS, with different surface characteristics, were prepared using glass etching technology combined with subsequent chemical modification methods, including hydroxylation treatment, metal ion modification, and amino modification. The adsorption efficiency of hydroxylated QS was higher than that of metal ion modified and amino modified QS, with adsorption efficiencies of 20.4331 mg/kg, 12.8736 mg/kg, and 10.1737 mg/kg, respectively. Results indicated that QS primarily reduce tetracycline through adsorption. Adsorption on ordinary QS fit the pseudo-first-order kinetic model, while adsorption on other modified QS and biofilm-coated QS fit the pseudo-second-order kinetics model. Biodegradation was identified as another mechanism for tetracycline reduction, which fit the zero-order kinetic model. Pseudomonas alcaligenes and unclassified Pseudomonas accounted for 96.6% of the total tetracycline-degrading bacteria. This study elucidates the effectiveness and mechanisms of five types of QS in treating tetracycline from sewage plant effluents. It provides a novel method for tetracycline reduction in real-world wastewater scenarios.
Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Antibacterianos , Tetraciclina , Aguas Residuales , Metales , Contaminantes Químicos del Agua/química , Adsorción , CinéticaRESUMEN
BACKGROUND: Web- and mobile-based physical activity interventions effectively promote physical and mental health among older adults, but participation and adherence are suboptimal. METHODS: This qualitative review used the mega-aggregation approach. Searches were conducted in five databases from the earliest to November 2023. Quality assessment and data extraction used JBI tools. Data synthesis used the COM-B model as a guide. RESULTS: Sixteen sub-themes were identified from the eight studies and categorized into the COM-B model. Subthemes were physical and psychological changes, digital skills and knowledge, older adult-friendly design, integration into daily routines, social influence, family engagement and support, health benefits and impairments, accessibility and flexibility, low cost, visibility and interaction, instructions and feedback, personalization and progression, incentives, self-efficacy, visual cues, self-monitoring. DISCUSSION: Web- and mobile-based interventions motivate older adults to engage in physical activity, but modifications are necessary. This includes age-appropriate interfaces and contents, tailored behavioral change techniques, and family engagement.
Asunto(s)
Ejercicio Físico , Promoción de la Salud , Percepción , Anciano , Humanos , Ejercicio Físico/psicología , Promoción de la Salud/métodos , Internet , Aplicaciones Móviles , Motivación , Investigación CualitativaRESUMEN
A series of 4-thio/seleno-cyanated pyrazoles was conveniently synthesized from 4-unsubstituted pyrazoles using NH4SCN/KSeCN as thio/selenocyanogen sources and PhICl2 as the hypervalent iodine oxidant. This metal-free approach was postulated to involve the in situ generation of reactive thio/selenocyanogen chloride (Cl-SCN/SeCN) from the reaction of PhICl2 and NH4SCN/KSeCN, followed by an electrophilic thio/selenocyanation of the pyrazole skeleton.
RESUMEN
Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.
Asunto(s)
Bacterias , Transcetolasa , Humanos , Bacterias/genética , Bacterias/metabolismo , Alcanosulfonatos/metabolismo , Oxidorreductasas , Adenosina Trifosfato , Azufre/metabolismo , LigasasRESUMEN
The treatment of 2-alkenylanilines with phenyliodine(III) diacetate (PIDA) and LiBr or KI in HFIP was found to afford the corresponding 3-haloindoles via cascade oxidative cyclization/halogenation encompassing oxidative C-N/C-X (X = Br, I) bond formations. A plausible mechanism involving the in situ formation of the reactive AcO-X (X = Br, I) from the reaction of PIDA and LiBr/KI was postulated.
RESUMEN
A metal-free synthesis of a series of fluoroalkyl-containing oxazoles from ß-monosubstituted enamines was developed. This fluoroacyloxylation/cyclization cascade process was mediated by fluoroalkyl-containing hypervalent iodine(III) species formed in situ from the reaction of phenyliodine(III) diacetate (PIDA) and RCF2CO2H (R = H, Cl, Br, F, CF3, CH3, Ph, SAr, OAr).
RESUMEN
A metal-free divergent synthesis of indole compounds dependent on a reagent via intramolecular C(sp2)-H amination was described. The reaction of 2-vinylanilines with DMSO/SOCl2 at 70 °C was found to give 2-thiomethylindoles, while replacing DMSO with diethyl sulfoxide afforded 2-unsubstituted indoles in a highly selective manner.
Asunto(s)
Dimetilsulfóxido , Sulfóxidos , Aminación , IndolesRESUMEN
In the past decades, DMSO has been widely used not only as a common solvent but also as an environmentally benign oxidant in various organic transformations. Most strikingly, DMSO can be used as a sulfur source to construct methylthiolated building blocks of potential biologically active molecules, which is a remarkable achievement in the field of organic sulfur chemistry. The purpose of this review article is to summarize and discuss the main developments in the application of DMSO as a methylthiolating reagent to introduce the -SMe functionality in organic synthesis.
Asunto(s)
Dimetilsulfóxido , Azufre , Técnicas de Química Sintética , Indicadores y Reactivos , SolventesRESUMEN
An interrupted Pummerer reaction of PhICl2 and sulfoxides was found to in situ generate reactive organosulfenyl chloride, which enabled the intramolecular electrophilic cyclization of 2-alkynylanilines, generating 3-sulfenylated indole with a good to excellent yield under metal-free conditions. One striking feature of the approach is that sulfoxide regeneration can be realized via the oxidation of the formed sulfides by the generated hypervalent iodine species.
RESUMEN
A highly substituent-dependent rearrangement allows for the novel and SOCl2-induced divergent synthesis of 3-methylthioquinolin-2-ones and 3-methylthiospiro[4.5]trienones through intramolecular electrophilic cyclization of N-aryl propyamides. DMSO acts as both solvent and sulfur source, and use of DMSO-h6/d6 enables the incorporation of SCH3 or SCD3 moieties to the 3-position of the heterocyclic framework. Different para-substituents trigger divergent reaction pathways leading to the formation of quinolin-2-ones for mild substituents and spiro[4,5]trienones for both electron-withdrawing and -donating substituents, respectively. On the basis of both computational and experimental results, a new mechanism has been put forward that accounts for the exclusive spirolization/defluorination process and the surprising substituent effects.
Asunto(s)
Dimetilsulfóxido , Compuestos de Espiro , Ciclización , ElectronesRESUMEN
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/µmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Asunto(s)
Acetamidas/metabolismo , Pirimidinas/metabolismo , Pirroles/metabolismo , Radiofármacos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Acetamidas/síntesis química , Acetamidas/farmacocinética , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Femenino , Ligandos , Masculino , Metilación , Ratones Endogámicos ICR , Tomografía de Emisión de Positrones , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Pirroles/síntesis química , Pirroles/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidoresRESUMEN
Molecular sieving can lead to ultrahigh selectivity and low regeneration energy because it completely excludes all larger molecules via a size restriction mechanism. However, it allows adsorption of all molecules smaller than the pore aperture and so separations of complicated mixtures can be hindered. Here, we report an intermediate-sized molecular sieving (iSMS) effect in a metal-organic framework (MAF-41) designed with restricted flexibility, which also exhibits superhydrophobicity and ultrahigh thermal/chemical stabilities. Single-component isotherms and computational simulations show adsorption of styrene but complete exclusion of the larger analogue ethylbenzene (because it exceeds the maximal aperture size) and smaller toluene/benzene molecules that have insufficient adsorption energy to open the cavity. Mixture adsorption experiments show a high styrene selectivity of 1,250 for an ethylbenzene/styrene mixture and 3,300 for an ethylbenzene/styrene/toluene/benzene mixture (orders of magnitude higher than previous reports). This produces styrene with a purity of 99.9%+ in a single adsorption-desorption cycle. Controlling/restricting flexibility is the key for iSMS and can be a promising strategy for discovering other exceptional properties.
RESUMEN
Motility induced phase separation as well as the nucleation process in active particle systems has gained extensive research attention very recently. Most studies so far have considered homogeneous cases without the influence of foreign seeds or impurities; however, the heterogeneous nucleation process, widely studied in passive systems, has not been systematically investigated yet. Here we study the heterogeneous nucleation process and phase behaviors of a suspension of active Brownian particles by introducing a rod-like passive seed. We found that such a seed can exponentially accelerate the nucleation rate and thus readily induce phase separation of a dilute active system, while a homogeneous one with the same volume fraction still maintains a single phase. It is observed that the seed would automatically detach from the dense phase after the completion of phase separation instead of staying inside as an impurity. Interestingly, we found that the phase behavior is re-entrant with the activity: single-phase states exist at both high and low activities, with phase separated states in between. Our results demonstrate that heterogeneous nucleation in an active system can show novel behaviors with respect to its passive counterpart, and pave the way for more future studies in relevant fields.
RESUMEN
Enantioselective cross-electrophile reactions remain a challenging subject in metal catalysis, and with respect to data, studies have mainly focused on stereoconvergent reactions of racemic alkyl electrophiles. Here, we report an enantioselective cross-electrophile aryl-alkenylation reaction of unactivated alkenes. This method provides access to a number of biologically important chiral molecules such as dihydrobenzofurans, indolines, and indanes. The incorporated alkenyl group is suitable for further reactions that can lead to an increase in molecular diversity and complexity. The reaction proceeds under mild conditions at room temperature, and an easily accessible chiral pyrox ligand is used to afford products with high enantioselectivity. The synthetic utility of this method is demonstrated by enabling the modification of complex molecules such as peptides, indometacin, and steroids.
RESUMEN
The diffusion behavior of an active Brownian particle (ABP) in polymer solutions is studied using Langevin dynamics simulations. We find that the long time diffusion coefficient D can show a non-monotonic dependence on the particle size R if the active force Fa is large enough, wherein a bigger particle would diffuse faster than a smaller one which is quite counterintuitive. By analyzing the short time dynamics in comparison to the passive one, we find that such non-trivial dependence results from the competition between persistent motion of the ABP and the length-scale dependent effective viscosity that the particle experiences in the polymer solution. We have also introduced an effective viscosity ηeff experienced by the ABP phenomenologically. Such an active ηeff is found to be larger than a passive one and strongly depends on R and Fa. In addition, we find that the dependence of D on propelling force Fa presents a good power-law scaling at a fixed R and the scaling factor changes non-monotonically with R. Such results demonstrate that the active process plays rather subtle roles in the diffusion of nano-particles in complex solutions.
RESUMEN
A general and efficient lactonization method of readily available 2-alkynylbenzoates affording biologically important isochromenones has been realized via a solely BF3·Et2O-mediated 6-endo-dig cyclization process under mild conditions. An alternative mechanistic pathway in which BF3·Et2O activates the carbonyl of the ester moiety, rather than the alkyne triple bond, was postulated on the basis of control experiment results. Gram-scale reaction and further application for the assembly of more complex molecules demonstrated the practicability of the protocol.