Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(4): 910-919, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38351611

RESUMEN

The miniature V-F CRISPR-Cas12f system has been repurposed for gene editing and transcription modulation. The small size of Cas12f satisfies the packaging capacity of adeno-associated virus (AAV) for gene therapy. However, the efficiency of Cas12f-mediated transcriptional activation varies among different target sites. Here, we developed a robust miniature Cas-based transcriptional activation or silencing system using Un1Cas12f1. We engineered Un1Cas12f1 and the cognate guide RNA and generated miniCRa, which led to a 1,319-fold increase in the activation of the ASCL1 gene. The activity can be further increased by tethering DNA-binding protein Sso7d to miniCRa and generating SminiCRa, which reached a 5,628-fold activation of the ASCL1 gene and at least hundreds-fold activation at other genes examined. We adopted these mutations of Un1Cas12f1 for transcriptional repression and generated miniCRi or SminiCRi, which led to the repression of ∼80% on average of eight genes. We generated an all-in-one AAV vector AIOminiCRi used to silence the disease-related gene SERPINA1. AIOminiCRi AAVs led to the 70% repression of the SERPINA1 gene in the Huh-7 cells. In summary, miniCRa, SminiCRa, miniCRi, and SminiCRi are robust miniature transcriptional modulators with high specificity that expand the toolbox for biomedical research and therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Edición Génica , Activación Transcripcional , Terapia Genética
2.
Mol Ther Nucleic Acids ; 35(2): 102201, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766526

RESUMEN

Adeno-associated virus (AAV) is a relatively safe and efficient vector for gene therapy. However, due to its 4.7-kb limit of cargo, SpCas9-mediated base editors cannot be packaged into a single AAV vector, which hinders their clinical application. The development of efficient miniature base editors becomes an urgent need. Un1Cas12f1 is a class II V-F-type CRISPR-Cas protein with only 529 amino acids. Although Un1Cas12f1 has been engineered to be a base editor in mammalian cells, the base-editing efficiency is less than 10%, which limits its therapeutic applications. Here, we developed hypercompact and high-efficiency base editors by engineering Un1Cas12f1, fusing non-specific DNA binding protein Sso7d, and truncating single guide RNA (sgRNA), termed STUminiBEs. We demonstrated robust A-to-G conversion (54% on average) by STUminiABEs or C-to-T conversion (45% on average) by STUminiCBEs. We packaged STUminiCBEs into AAVs and successfully introduced a premature stop codon on the PCSK9 gene in mammalian cells. In sum, STUminiBEs are efficient miniature base editors and could readily be packaged into AAVs for biological research or biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA