RESUMEN
OBJECTIVE: To further reveal the chemical constituents of Polypodium hastatum, volatile components from this plant were investigated. METHODS: The volatile components were extracted under reflux from the whole plant of Polypodium hastatum, and then analyzed qualitatively and quantitatively by GC-MS. RESULTS: 60 volatile components were detected and of all components detected, the structures and relative contents of 34 volatile compounds were elucidated. CONCLUSION: In the volatile components identified, most are fatty acid esters, especially methyl and ethyl esters, which compose the major volatile chemical constituents of Polypodium hastatum.
Asunto(s)
Aceites Volátiles/química , Aceites de Plantas/química , Polypodium/química , Ácidos Grasos , Cromatografía de Gases y Espectrometría de MasasRESUMEN
Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.
Asunto(s)
Glucosa , Podocitos , Receptores Acoplados a Proteínas G , Transducción de Señal , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Glucosa/toxicidad , Glucosa/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Línea CelularRESUMEN
OBJECTIVE: To investigate the chemical constituents of Kalopanax septemlobus. METHODS: Chromatographic techniques including silica gel, gel, semi-preparative HPLC and PTLC as well as recrystallization were employed in the isolation and purification, and the structures were elucidated by spectral analysis and physical and chemical properties. RESULTS: 6 compounds were identified as liriodendrin (1), (-) -syringarenol (2), trans-coniferyl aldehyde (3), trans-caffeic acid (4), beta-daucosterol (5), beta-sitosterol (6). CONCLUSION: Compounds 2 -5 are obtained from this genus for the first time.
Asunto(s)
Aldehídos/aislamiento & purificación , Furanos/aislamiento & purificación , Kalopanax/química , Lignanos/aislamiento & purificación , Raíces de Plantas/química , Acroleína/análogos & derivados , Aldehídos/química , Ácidos Cafeicos/química , Ácidos Cafeicos/aislamiento & purificación , Furanos/química , Lignanos/química , Estructura Molecular , Corteza de la Planta/química , Plantas Medicinales/química , Sitoesteroles/química , Sitoesteroles/aislamiento & purificaciónRESUMEN
The fruits of Swietenia macrophylla King have been processed commercially to a variety of health foods and healthcare products and exhibited antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. This study was aimed to examine the glucose consumption in human hepatoma HepG2 cells and the expression of PPARγ of limonoids isolated from the fruits of S. macrophylla. The phytochemical investigation of the fruits led to the isolation of ten limonoids which structures were elucidated by spectroscopic analysis as swietenine (1), khayasin T (2), 6-deoxyswietenine (3), 3-O-tigloylswietenolide (4), swietenolide (5), 3,6-O,O-diacetylswietenolide (6), 7-deacetoxy-7-oxogedunin (7), fissinolide (8), proceranolide (9), 7-deacetoxy-7α-hydroxygedunin (10), and compound 10 was isolated from this plant for the first time. The glucose consumption assay revealed that compounds 1, 2, 3, 5, and 9 could promote glucose consumption significantly in normal hyperglycemia-induced HepG2 cells, furthermore, compounds 1, 5, and 9 had a better effect on promoting glucose consumption in insulin-resistant HepG2 cells. In addition, compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells according to the western blotting analysis result. PRACTICAL APPLICATIONS: Swietenia macrophylla King belongs to the family Meliaceae and the fruits have been exhibited a wide range of biological activities, such as antidiabetic, anti-inflammatory, antimutagenicity, antitumor activity, and so on. Phytochemical investigations of S. macrophylla have revealed that limonoids and triterpenoids were effective antidiabetic agents. However, the mechanism of these limonoids to antidiabetic activity is unclear. In this study, limonoids were isolated from the fruit of S. macrophylla and their effects on the glucose consumption of insulin-resistant HepG2 cells were studied. The results showed that compounds 1 and 5 could dramatically enhance the expression of PPARγ protein in insulin-resistant HepG2 cells, which will give aid to explore the mechanism of these limonoids in the treatment of type 2 diabetes. Therefore, this research might facilitate further research and development of S. macrophylla.
Asunto(s)
Diabetes Mellitus Tipo 2 , Limoninas , Meliaceae , Frutas , Glucosa , Células Hep G2 , Humanos , Insulina , Limoninas/farmacología , PPAR gamma/genéticaRESUMEN
Hypericum patulum has been used as a folk medicine for its varied therapeutic effects including antifungal, wound-healing, spasmolytic, stimulant, hypotensive activities. The water decoction is drank as tea could treat cold, infantile malnutrition. The present study aims to isolate the constituents of the plant and investigate their effects on the glucose consumption in insulin-resistant HepG2 cells, furthermore, lipid metabolism in oleic acid (OA)-treated HepG2 cells was also studied. The phytochemical investigation of the plant led to the isolation of eleven compounds, and their structures were identified by spectroscopic analysis as n-dotriacontanol (1), shikimic acid (2), 1-O-caffeoylquinic acid methyl ester (3), 5-O-caffeoylquinic acid methyl ester (4), 5-O-coumaroylquinic acid methyl ester (5), 5-O-caffeoylquinic acid butyl ester (6), quercetin-3-O-α-L-rhamnoside (7), quercetin (8), quercetin-3-O-(4×´-methoxy)-α-L-rahmnopyranosyl (9), hyperoside (10), and rutin (11). The results revealed that compounds 7, 9, and 10 could enhance glucose consumption significantly in hyperglycemia induced HepG2 cells and insulin-resistant HepG2 cells. In addition, the western blotting analysis result exhibited that compounds 7, 9, and 10 in high concentration (5 µM, H) group could dramatically upregulate the expression of PPARγ protein, and even the effect of them had no significant difference compared with that of rosiglitazone. Furthermore, compounds 9 and 10 in middle concentration (2.5 µM, M) group and H group could dramatically promote triglyceride metabolism and decrease TG content in OA-treated HepG2 cells, and even in H group, reactive oxygen species (ROS) level were significantly decreased compared with model group. PRACTICAL APPLICATIONS: Hypericum patulum is a well-known plant of the genera Hypericum for its varied preventive and therapeutic potential activities. To study the chemical constituents and their effects on glucose and lipid metabolism in vitro, we detected glucose consumption in insulin-resistant HepG2 cells, triglyceride content and reactive oxygen species level in OA-treated HepG2 cells. In addition, PPARγ protein was also detected by western blotting analysis in the study. Compounds 1, 2, 3, 5, 6, 9, 10, and 11 were isolated from the plant for the first time. Quercetin-3-O-(4"-methoxy)-α-L-rahmnopyranosyl (9) and hyperoside (10) had potential therapeutic benefit against glucose and lipid metabolic disease. Therefore, this study might have certain guiding significance for further research and development of H. patulum.