Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 40(1): 13, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347241

RESUMEN

AIMS: Nuclear protein 1 (Nupr1) is a multifunctional stress-induced protein involved in the regulation of tumorigenesis, apoptosis, and autophagy. However, its role in pulmonary hypertension (PH) after METH exposure remains unexplored. In this study, we aimed to investigate whether METH can induce PH and describe the role and mechanism of Nupr1 in the development of PH. METHODS AND RESULTS: Mice were made to induce pulmonary hypertension (PH) upon chronic intermittent treatment with METH. Their right ventricular systolic pressure (RVSP) was measured to assess pulmonary artery pressure. Pulmonary artery morphometry was determined by H&E staining and Masson staining. Nupr1 expression and function were detected in human lungs, mice lungs exposed to METH, and cultured pulmonary arterial smooth muscle cells (PASMCs) with METH treatment. Our results showed that chronic intermittent METH treatment successfully induced PH in mice. Nupr1 expression was increased in the cultured PASMCs, pulmonary arterial media from METH-exposed mice, and METH-ingested human specimens compared with control. Elevated Nupr1 expression promoted PASMC phenotype change from contractile to synthetic, which triggered pulmonary artery remodeling and resulted in PH formation. Mechanistically, Nupr1 mediated the opening of store-operated calcium entry (SOCE) by activating the expression of STIM1, thereby promoting Ca2+ influx and inducing phenotypic conversion of PASMCs. CONCLUSIONS: Nupr1 activation could promote Ca2+ influx through STIM1-mediated SOCE opening, which promoted METH-induced pulmonary artery remodeling and led to PH formation. These results suggested that Nupr1 played an important role in METH-induced PH and might be a potential target for METH-related PH therapy.


Asunto(s)
Hipertensión Pulmonar , Metanfetamina , Ratones , Humanos , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Metanfetamina/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Células Cultivadas , Arteria Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Proliferación Celular
2.
J Nanobiotechnology ; 22(1): 79, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419097

RESUMEN

Osteoarthritis (OA) is a degenerative disease that significantly impairs quality of life. There is a pressing need for innovative OA therapies. While small extracellular vesicles (sEVs) show promising therapeutic effects against OA, their limited yield restricts clinical translation. Here, we devised a novel production system for sEVs that enhances both their yield and therapeutic properties. By stimulating mesenchymal stem cells (MSCs) using electromagnetic field (EMF) combined with ultrasmall superparamagnetic iron oxide (USPIO) particles, we procured an augmented yield of EMF-USPIO-sEVs. These vesicles not only activate anabolic pathways but also inhibit catabolic activities, and crucially, they promote M2 macrophage polarization, aiding cartilage regeneration. In an OA mouse model triggered by anterior cruciate ligament transection surgery, EMF-USPIO-sEVs reduced OA severity, and augmented matrix synthesis. Moreover, they decelerated OA progression through the microRNA-99b/MFG-E8/NF-κB signaling axis. Consequently, EMF-USPIO-sEVs present a potential therapeutic option for OA, acting by modulating matrix homeostasis and macrophage polarization.


Asunto(s)
Vesículas Extracelulares , Osteoartritis , Animales , Ratones , Calidad de Vida , Osteoartritis/metabolismo , Homeostasis , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo
3.
J Youth Adolesc ; 53(1): 21-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747680

RESUMEN

Depression and anxiety symptoms are on the rise among adolescents. With increasing evidence that cellular aging may be associated with depressive and anxiety symptoms, there is an urgent need to identify the social environment context that may moderate this link. This study addresses this research gap by investigating the moderating role of the social environment on the relation between telomere length and emotional health among adolescents. Participants were 411 non-Hispanic (88.56%) Black (100%) adolescents (M = 14.23 years, SD = 1.85, female = 54%) in a major metropolitan city. Youth and parents reported on an array of social risk and protective factors, and youth provided DNA samples for telomere length measurement. Results demonstrated that the association of telomere length and anxiety symptoms was stronger among youth with higher perceived stress or lower school belongingness, and the association of telomere length with depressive symptoms was stronger under conditions of higher parent inter-partner psychological aggression. The results enhance our understanding of the complex associations between biological aging, the social environment, and mental health in adolescence.


Asunto(s)
Depresión , Emociones , Humanos , Adolescente , Femenino , Depresión/psicología , Ansiedad/psicología , Medio Social , Telómero
4.
Dev Psychobiol ; 64(7): e22311, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282763

RESUMEN

Telomere length (TL) is proposed to play a mechanistic role in how the exposome affects health outcomes. Little is known about TL during adolescence, a developmental period during which precursors of adult-onset health problems often emerge. We examined health and demographic sources of variation in TL in 899 youth aged 11-17. Demographic and health information included age, sex, race, household income, caregiver age and marital status, youth tobacco exposure, body mass index, pubertal status, health problems, medication use, and season of data collection. Genomic DNA was extracted from saliva, and T/S ratios were computed following qPCR. Age, race, season of data collection, and household income were associated with the telomere to single copy (T/S) ratio. We found that T/S ratios were larger at younger ages, among Black youth, for saliva collected during autumn and winter, and among households with higher income. Analyses stratified by race revealed that the association between age and T/S ratio was present for Black youth, that season of collection was present across races, but that family demographic associations with T/S ratio varied by race. The results provide information for future telomere research and highlight adolescence as a potentially important developmental phase for racial disparities in telomere shortening and health.


Asunto(s)
Acortamiento del Telómero , Telómero , Adulto , Adolescente , Humanos , Índice de Masa Corporal , ADN , Demografía
5.
Cell Tissue Bank ; 23(2): 313-324, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34251541

RESUMEN

Tissue engineering is a promising technique for the repair of bone defects. An efficient and homogeneous distribution of cell seeding into scaffold is a crucial but challenging step in the technique. Murine bone marrow mesenchymal stem cells were seeded into porous hydroxyapatite scaffolds of two morphologies by three methods: static seeding, semi-dynamic seeding, or dynamic perfusion seeding. Seeding efficiency, survival, distribution, and proliferation were quantitatively evaluated. To investigate the performance of the three seeding methods for larger/thicker scaffolds as well as batch seeding of numerous scaffolds, three scaffolds were stacked to form assemblies, and seeding efficiencies and cell distribution were analyzed. The semi-dynamic seeding and static seeding methods produced significantly higher seeding efficiencies, vitalities, and proliferation than did the dynamic perfusion seeding. On the other hand, the semi-dynamic seeding and dynamic perfusion seeding methods resulted in more homogeneous cell distribution than did the static seeding. For stacked scaffold assemblies, the semi-dynamic seeding method also created superior seeding efficiency and longitudinal cell distribution homogeneity. The semi-dynamic seeding method combines the high seeding efficiency of static seeding and satisfactory distribution homogeneity of dynamic seeding while circumventing their disadvantages. It may contribute to improved outcomes of bone tissue engineering.


Asunto(s)
Durapatita , Células Madre Mesenquimatosas , Animales , Huesos , Células Cultivadas , Ratones , Porosidad , Ingeniería de Tejidos/métodos , Andamios del Tejido
6.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232757

RESUMEN

Macroporous characteristics have been shown to play a key role in the osteoinductivity of hydroxyapatite ceramics, but the physics underlying the new bone formation and distribution in such scaffolds still remain elusive. The work here has emphasized the osteoinductive capacity of porous hydroxyapatite scaffolds containing different macroporous sizes (200-400 µm, 1200-1500 µm) and geometries (star shape, spherical shape). The assumption is that both the size and shape of a macropore structure may affect the microfluidic pathways in the scaffolds, which results in the different bone formations and distribution. Herein, a mathematical model and an animal experiment were proposed to support this hypothesis. The results showed that the porous scaffolds with the spherical macropores and large pore sizes (1200-1500 µm) had higher new bone production and more uniform new bone distribution than others. A finite element analysis suggested that the macropore shape affected the distribution of the medium-high velocity flow field, while the macropore size effected microfluid speed and the value of the shear stress in the scaffolds. Additionally, the result of scaffolds implanted into the dorsal muscle having a higher new bone mass than the abdominal cavity suggested that the mechanical load of the host tissue could play a key role in the microfluidic pathway mechanism. All these findings suggested that the osteoinduction of these scaffolds depends on both the microfluid velocity and shear stress generated by the macropore size and shape. This study, therefore, provides new insights into the inherent osteoinductive mechanisms of bioceramics, and may offer clues toward a rational design of bioceramic scaffolds with improved osteoinductivity.


Asunto(s)
Durapatita , Andamios del Tejido , Animales , Cerámica/farmacología , Durapatita/química , Microfluídica , Porosidad , Andamios del Tejido/química
7.
Plant Dis ; 104(7): 1960-1968, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32401619

RESUMEN

Strawberry anthracnose caused by Colletotrichum spp. is one of the most serious diseases in the strawberry fields of China. In total, 196 isolates of Colletotrichum were obtained from leaves, stolons, and crowns of strawberry plants with anthracnose symptoms in eastern China and were characterized based on morphology, internal transcribed spacer (ITS), and ß-tubulin (TUB2) gene sequences. All 196 isolates were identified as the Colletotrichum gloeosporioides species complex. In total, 62 strains were further identified at the species level by phylogenetic analyses of multilocus sequences of ITS, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), Apn2-Mat1-2 intergenic spacer and partial mating type (ApMat), calmodulin (CAL), and TUB2. Three species from the C. gloeosporioides species complex were identified: Colletotrichum siamense, C. fructicola, and C. aenigma. Isolates of C. siamense were tolerant to high temperatures, with a significantly larger colony diameter than the other two species when grown above 36°C. The inoculation of strawberry plants confirmed the pathogenicity of all three species. C. siamense isolates resulted in the highest disease severity. The in vitro sensitivities of C. siamense and C. fructicola isolates to azoxystrobin and three demethylation-inhibitor (DMI) fungicides (difenoconazole, tebuconazole, and prochloraz) were determined. Both species were sensitive to DMI fungicides but not to azoxystrobin. C. siamense isolates were more sensitive to prochloraz, while C. fructicola isolates were more sensitive to difenoconazole and tebuconazole. The present study provides valuable information for the effective management of strawberry anthracnose.


Asunto(s)
Colletotrichum , Fragaria , Fungicidas Industriales , China , Filogenia , Enfermedades de las Plantas
8.
Chin Med Sci J ; 35(3): 283-285, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32972507

RESUMEN

A 32-year-old man who complained of recurrent nauseat and vomiting was admitted to our hospital. The contrast-enhanced computed tomography revealed a cystic mass located behind the duodenum which was suggestive of lymphangioma. Laparoscopic resection of the retroperitoneal mass was successfully performed. The postoperatively pathological examination confirmed the diagnosis of cavernous lymphangioma. Ultrasound and enhanced CT can be used for making a preoperative diagnosis. Once symptoms of the disease develop, complete surgical resection should be performed.


Asunto(s)
Linfangioma/cirugía , Neoplasias Retroperitoneales/cirugía , Abdomen/diagnóstico por imagen , Abdomen/patología , Adulto , Humanos , Linfangioma/diagnóstico por imagen , Masculino , Neoplasias Retroperitoneales/diagnóstico por imagen , Espacio Retroperitoneal/diagnóstico por imagen , Espacio Retroperitoneal/patología , Tomografía Computarizada por Rayos X , Ultrasonografía , Vena Cava Inferior/patología
9.
Phytopathology ; 109(4): 531-541, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30130146

RESUMEN

The fungus Colletotrichum fructicola (a species of C. gloeosporioides complex) causes devastating anthracnose in strawberry. Like other species of the genus Colletotrichum, it uses a composite strategy including both the biotrophic and necrotrophic processes for pathogenesis. Host-derived hormones are central regulators of immunity, among which salicylic acid (SA) is the core defense one against biotrophic and hemibiotrophic pathogens. However, the manner and timing of pathogen manipulation of SA are largely elusive in strawberry. To achieve better understanding of the early challenges that SA-mediated defense experiences during strawberry/C. fructicola interaction, dynamic changes of SA levels were followed through the high-performance liquid chromatography method. A very early burst of free SA at 1 h postinoculation (hpi) followed by a fast quenching during the next 12 h was noticed, although rhythm variations were present in two hosts. Transcriptional characterization of genes related to SA pathway in two varieties on C. fructicola inoculation revealed that these genes were differentially expressed, although they were all induced at different time points. At the same time, three types of genes encoding homologous effectors interfering with SA accumulation were found to be first inhibited but sequentially activated during the first 24 hpi. Furthermore, subcellular localization analysis suggests that CfShy1 is a weapon of C. fructicola for strawberry invasion. Based on these results, we propose that the infection strategy that C. fructicola utilizes on strawberry is specialized, which is implemented through the optimized expression of a specific set of effector genes. Transcriptional characterization of host genes supports that de novo SA biosynthesis and the free SA release from methyl salicylate might contribute equally to the intricate control of SA homeostasis in strawberry. C. fructicola manipulation of SA-dependent resistance in strawberry might be closely related to multihormonal interplay among SA, jasmonic acid, abscisic acid, and cytokinin.


Asunto(s)
Colletotrichum , Fragaria , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Ácido Salicílico , Colletotrichum/genética , Colletotrichum/patogenicidad , Fragaria/genética , Fragaria/microbiología , Enfermedades de las Plantas/microbiología
10.
Acta Biochim Biophys Sin (Shanghai) ; 51(7): 707-714, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31187140

RESUMEN

Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Leptin is a hormone secreted by adipose tissue. Recent reports have shown that leptin can induce cancer cell proliferation and regulate cell energy metabolism, but the regulatory mechanism is still unclear. Here, we showed that leptin could promote cell proliferation and maintain high adenosine triphosphate levels in HCT116 and MCF-7 cells. The expression levels of carnitine palmitoyl transferase 1A (CPT1A), pyruvate dehydrogenase, succinate dehydrogenase subunit A and mitochondrial respiratory chain-associated proteins NADH dehydrogenase 1 (ND1), NADH:ubiquinone oxidoreductase subunit B8, and mitochondrial transcription factor A (TFAM) were distinctly increased in leptin-treated HCT116 and MCF-7 cells, while fatty acid synthase and lactate dehydrogenase expression were downregulated. Simultaneously, we found that c-Myc and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) protein expression levels were significantly increased. These results indicated that leptin boosted fatty acid ß-oxidation and the tricarboxylic acid cycle, enhanced oxidative phosphorylation (OXPHOS) activity, and inhibited fatty acid synthesis and glycolysis in tumor cells. Gene transfection experiments revealed that leptin could induce the expression of c-Myc. Moreover, the expressions of PGC-1, CPT1A, and TFAM proteins were downregulated in HCT116 cells with low expression of c-Myc, and the expression levels of these proteins were increased in HCT116 cells overexpressing c-Myc. These findings suggest that leptin plays an important role in the regulation of energy metabolism in tumor cells. It may regulate fatty acid oxidation and OXPHOS of tumor cells by regulating the c-Myc/PGC-1 pathway. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. This study has important implications for the clinical therapy of tumor cell metabolism through hormone regulation.


Asunto(s)
Ácidos Grasos/metabolismo , Leptina/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Leptina/genética , Leptina/metabolismo , Células MCF-7 , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos
11.
Biochem Biophys Res Commun ; 503(2): 888-894, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29928884

RESUMEN

The Warburg effect is a dominant phenotype of most tumor cells. Recent reports have shown that the Warburg effect can be reprogrammed by the tumor microenvironment. Lactic acidosis and glucose deprivation are the common adverse microenvironments in solid tumor. The metabolic reprogramming induced by lactic acid and glucose deprivation remains to be elucidated in glioblastoma. Here, we show that, under glucose deprivation, lactic acid can preserve high ATP levels and resist cell death in U251 cells. At the same time, we find that MCT1 and MCT4 are significantly highly expressed. The metabolic regulation factor HIF-1α decreased and C-MYC increased. Nuclear respiratory factor 1 (NRF1) and oxidative phosphorylation (OXPHOS)-related proteins (NDUFB8, ND1) are all distinctly increased. Therefore, lactic acid can induce lactate transport and convert the dominant Warburg effect to OXPHOS. Through bioinformatics analysis, the high expression of HIF-1α, MCT1 or MCT4 indicate a poor prognosis in glioblastoma. In addition, in glioblastoma tissue, HIF-1α, MCT4 and LDH are highly expressed in the interior region, and their expression is decreased in the lateral region. MCT1 can not be detected in the interior region and is highly expressed in the lateral region. Hence, different regions of glioblastoma have diverse energy metabolic pathways. Glycolysis occurs mainly in the interior region and OXPHOS in the lateral region. In general, lactic acid can induce regional energy metabolic reprogramming and assist tumor cells to adapt and resist adverse microenvironments. This study provides new ideas for furthering understanding of the metabolic features of glioblastoma. It may promote the development of new therapeutic strategies in GBM.


Asunto(s)
Glioblastoma/metabolismo , Glucólisis/efectos de los fármacos , Lactatos/metabolismo , Ácido Láctico/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Transporte Biológico/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Simportadores/metabolismo
12.
J Mater Sci Mater Med ; 28(6): 83, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28432501

RESUMEN

The aim of this study is to develop a simple, convenient and effective approach to synthesize nano-sized hydroxyapatite (nano-HA) at high-scale yield. Nano-HA was wet synthesized in the presence or absence of alendronate sodium (ALN), one of bisphosphonates for anti-osteoporotic. Then aged and washed nano-HA precipitate was directly treated by mechanical activation combined with the chemical dispersion of ALN to prevent the agglomeration of nano-HA. ALN acted not only as a chemical dispersant but also as an orthopedic drug. In vitro release showed that ALN was released slowly from nano-HA. Transmission electron microscopy (TEM) revealed that nano-HA with size less than 100 nm appeared as single particle after being treated by mechanical activation combined with the dispersion of ALN (AMA-HA and MA-HA). High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) confirmed that as-prepared nanoparticles were HA with low crystallinity and crystallite size. Fourier transform infrared spectroscopy (FTIR) indicated that the phosphonate groups in ALN were introduced to bond with the Ca2+ of HA to impede the growth of HA crystal. Zeta potential illustrated that the absolute value of surface negative charge of nano-HA increased significantly with the addition of ALN, which inhibited the agglomeration of nano-HA. The present approach makes it feasible to produce nano-HA at high-scale yield, which provide the possibility to construct bone graft.


Asunto(s)
Materiales Biocompatibles , Durapatita/química , Ensayo de Materiales/métodos , Nanoestructuras/química , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Propiedades de Superficie
13.
J Microencapsul ; 32(5): 443-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26057256

RESUMEN

Metallic bone implants face interfacial concerns, such as infection and insufficient bone formation. Combination of drug-loaded microparticles with the implant surface is a promising approach to reducing the concerns. The present study reports a simple method for this purpose. Drug-loaded chitosan and alginate microparticles were separately prepared by emulsion methods. Dry microparticles were introduced into porous titanium (Ti) coatings on Ti discs, and induced to agglomerate in pores by wetting with water. Agglomerates were stably entrapped in the pores: 77-82% retained in the coating after immersion in a water bath for 7 d. Discs carrying drug-loaded microparticles showed a rapid release within 6 h and a subsequent slow release up to 1 d. After coculture with Staphylococcus epidermidis for 24 h, the discs formed inhibition zones, confirming antibacterial properties. These suggest that the microparticle entrapment-based method is a promising method for reducing some of the bone-implant interfacial concerns.


Asunto(s)
Antibacterianos , Sustitutos de Huesos , Materiales Biocompatibles Revestidos , Implantes de Medicamentos , Staphylococcus epidermidis/crecimiento & desarrollo , Alginatos/química , Alginatos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Implantes de Medicamentos/química , Implantes de Medicamentos/farmacología , Ácido Glucurónico/química , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Porosidad
14.
J Integr Plant Biol ; 56(4): 350-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24373096

RESUMEN

Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry.


Asunto(s)
Fragaria/enzimología , Fragaria/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética
15.
Front Biosci (Landmark Ed) ; 29(2): 60, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38420799

RESUMEN

BACKGROUND: Mutant analysis remains one of the main genetic tools for characterising unclarified gene functions in plants, especially in non-model plants. Daylily (Hemerocallis spp.) is a popular perennial ornamental plant grown worldwide. Analysis of daylily mutants can enhance understanding of genes regulating the albino phenotype and improve the cultivar quality of daylily. METHODS: The natural albino mutant (Alb-⁣/-) was isolated by screening a self-pollinated progeny of daylily cultivar 'black-eyed stella'. Transmission electron microscopy was used in analysing the structure of plastids between mutant and wild-type seedlings. The content of chlorophyll, carotenoids and chlorophyll precursors in plants was measured by ultraviolet spectrophotometry. RNA sequencing and physiological measurements were performed to explore the association between drought tolerance and mutation. RESULTS: All the seedlings of the daylily albino mutants died spontaneously within fifteen days after germination when grown in soil. The carotenoid and chlorophyll content in the leaves of the mutant plants significantly decreased compared with those of the wild-type control. The mutant plants displayed stunted growth, and their leaves were white or light yellow in color. Abnormal plastids such as those showing endomembrane vesiculation and lacking stacking were discovered in the leaves of mutant plants. Furthermore, genetic analysis revealed that a single recessive nuclear gene mutation led to the albino trait, RNA sequencing and real-time quantitative PCR validation showed extensive differences in gene expression between the mutant plants and the wild-type control, and most of the genes related to chlorophyll metabolism were down-regulated, with foldchange ranging from 0.20-0.49. Additionally, the surviving homozygous plants (Alb+⁣/+), which do not contain this mutation, were also isolated by analysing the phenotype of their self-pollinated progeny. The net photosynthesis rate and light saturation point of Alb+⁣/+ were higher than those of heterozygous (Alb+⁣/-) plants. Additionally, the Alb+⁣/+ plants were more tolerant to drought conditions than the Alb+⁣/- plants, suggesting that a heterozygous Alb- mutation is sufficient to negatively affect photosynthetic efficiency and drought tolerance. CONCLUSIONS: The albino mutation negatively affects photosynthetic efficiency and drought tolerance, and homozygous mutation is required for the characteristic albino phenotype. This work highlights the link between albino mutation, photosynthetic pigment metabolism and drought sensitivity in daylily.


Asunto(s)
Hemerocallis , Hemerocallis/metabolismo , Sequías , Fotosíntesis/genética , Clorofila/análisis , Clorofila/metabolismo , Mutación , Carotenoides/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
16.
Neurotoxicology ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901802

RESUMEN

Methamphetamine (METH) is a widely abused amphetamine-type psychoactive drug that causes serious health problems. Previous studies have demonstrated that METH can induce neuron autophagy and apoptosis in vivo and in vitro. However, the molecular mechanisms underlying METH-induced neuron autophagy and apoptosis remain poorly understood. Stromal interacting molecule 1 (STIM1) was hypothesized to be involved in METH-induced neuron autophagy and apoptosis. Therefore, the expression of STIM1 protein was measured and the effect of blocking STIM1 expression with siRNA was investigated in cultured neuronal cells, and the hippocampus and striatum of mice exposed to METH. Furthermore, intracellular calcium concentration and endoplasmic reticulum (ER) stress-related proteins were determined in vitro and in vivo in cells treated with METH. The results suggested that STIM1 mediates METH-induced neuron autophagy by activating the p-Akt/p-mTOR pathway. METH exposure also resulted in increased expression of Orai1, which was reversed after STIM1 silencing. Moreover, the disruption of intracellular calcium homeostasis induced ER stress and up-regulated the expression of pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein (CHOP), resulting in classic mitochondria apoptosis. METH exposure can cause neuronal autophagy and apoptosis by increasing the expression of STIM1 protein; thus, STIM1 may be a potential gene target for therapeutics in METH-caused neurotoxicity.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167284, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851304

RESUMEN

AIM: Methamphetamine (METH) chronic exposure is an important risk factor for hypertension development. However, the mechanisms behind METH-induced hypertension remain unclear. Therefore, we aimed to reveal the potential mechanisms underlying METH-induced hypertension. METHODS AND RESULTS: We structured the mouse hypertension model by METH, and observed that METH-treated mice have presented vascular remodeling (large-and small-size arteries) with collagen deposit around the vessel and increasing blood pressure (BP) and Sigma1 receptor (Sigmar1) in vascular tissue. We hypothesized that Sigmar1 is crucial in METH-induced hypertension and vascular remodeling. Sigmar1 knockout (KO) mice and antagonist (BD1047) pretreated mice exposed to METH for six-week showed higher BP and more collagen deposited around vessels than wild-type (WT) mice exposed to METH for six-week, in contrast, mice pretreated with Sigmar1 agonist (PRE-084) had unchanged BP and perivascular collagen despite the six-week METH exposure. Furthermore, we found that METH exposure induced vascular smooth muscle cells (VSMCs) and mesenchymal stem cells to differentiate into the myofibroblast-like cell and secrete collagen into surrounding vessels. Mechanically, Sigmar1 can suppress the COL1A1 expression by blocking the classical fibrotic TGF-ß/Smad2/3 signaling pathway in METH-exposed VSMCs and mesenchymal stem cells. CONCLUSION: Our results suggest that Sigmar1 is involved in METH-induced hypertension and vascular fibrosis by blocking the activation of the TGF-ß/Smad2/3 signaling pathway. Accordingly, Sigmar1 may be a novel therapeutic target for METH-induced hypertension and vascular fibrosis.

18.
Nat Commun ; 15(1): 2689, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538612

RESUMEN

The applications of silica-based glass have evolved alongside human civilization for thousands of years. High-precision manufacturing of three-dimensional (3D) fused silica glass objects is required in various industries, ranging from everyday life to cutting-edge fields. Advanced 3D printing technologies have emerged as a potent tool for fabricating arbitrary glass objects with ultimate freedom and precision. Stereolithography and femtosecond laser direct writing respectively achieved their resolutions of ~50 µm and ~100 nm. However, fabricating glass structures with centimeter dimensions and sub-micron features remains challenging. Presented here, our study effectively bridges the gap through engineering suitable materials and utilizing one-photon micro-stereolithography (OµSL)-based 3D printing, which flexibly creates transparent and high-performance fused silica glass components with complex, 3D sub-micron architectures. Comprehensive characterizations confirm that the final material is stoichiometrically pure silica with high quality, defect-free morphology, and excellent optical properties. Homogeneous volumetric shrinkage further facilitates the smallest voxel, reducing the size from 2.0 × 2.0 × 1.0 µm3 to 0.8 × 0.8 × 0.5 µm3. This approach can be used to produce fused silica glass components with various 3D geometries featuring sub-micron details and millimetric dimensions. This showcases promising prospects in diverse fields, including micro-optics, microfluidics, mechanical metamaterials, and engineered surfaces.

19.
Brain Imaging Behav ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642314

RESUMEN

Early diagnosis of subcortical vascular mild cognitive impairment (svMCI) is clinically essential because it is the most reversible subtype of all cognitive impairments. Since structural alterations of hippocampal sub-regions have been well studied in neurodegenerative diseases with pathophysiological cognitive impairments, we were eager to determine whether there is a selective vulnerability of hippocampal sub-fields in patients with svMCI. Our study included 34 svMCI patients and 34 normal controls (NCs), with analysis of T1 images and Montreal Cognitive Assessment (MoCA) scores. Gray matter volume (GMV) of hippocampal sub-regions was quantified and compared between the groups, adjusting for age, sex, and education. Additionally, we explored correlations between altered GMV in hippocampal sub-fields and MoCA scores in svMCI patients. Patients with svMCI exhibited selectively reduced GMV in several left hippocampal sub-regions, such as the hippocampal tail, hippocampal fissure, CA1 head, ML-HP head, CA4 head, and CA3 head, as well as decreased GMV in the right hippocampal tail. Specifically, GMV in the left CA3 head was inversely correlated with MoCA scores in svMCI patients. Our findings indicate that the atrophy pattern of patients with svMCI was predominantly located in the left hippocampal sub-regions. The left CA3 might be a crucial area underlying the distinct pathophysiological mechanisms of cognitive impairments with subcortical vascular origins.

20.
IEEE Trans Cybern ; PP2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37549085

RESUMEN

Motivated by the fact that there exists the operation of conjugation in quantum systems, the concept of bicon-numbers is proposed in this article. The bicon-numbers are defined by introducing two symbolic parameters into the set of complex numbers. The basic functions of these two symbolic parameters are specified by an axiom which abstracts the operation of complex conjugation. Basic properties are developed for the operations of addition and multiplication in the bicon-number set. In addition, several different forms are given for bicon-numbers, and the corresponding operation rules are established. By exploring the relations of the vensors in the bicon-number set, the structure of the bicon-number set is depicted, and real matrix representations of bicon-numbers are also presented. Besides, bicomplex matrix representations for bicon-numbers are also investigated in view that the operation of multiplication for bicomplex numbers possesses commutativity property. In addition, the matrices with bicon-numbers as entries are investigated, and state responses of some quantum systems are given within the framework of bicon-numbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA