Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; : 107804, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307305

RESUMEN

Avian leukosis virus subgroup J (ALV-J), a member of the genus Alpharetrovirus, possesses a small genome and exploits a vast array of host factors during its replication cycle. To identify host factors required for ALV-J replication and potentially guide the development of key therapeutic targets for ALV-J prevention, we employed a chicken genome-wide CRISPR/Cas9 knockout library to screen host factors involved in ALV-J infection within DF-1 cells. This screening revealed 42 host factors critical for ALV-J infection. Subsequent knockout assays showed that the absence of the genes encoding cycle-regulatory proteins, namely Cables1, CDK1, and DHFR, significantly inhibited ALV-J replication. Notably, Cables1 knockout cell lines displayed the most pronounced inhibitory effect. Conversely, overexpression assays confirmed that Cables1 significantly promotes ALV-J replication. Immunoprecipitation assays further indicated that Cables1 specifically interacts with the viral protein p15 (viral protease) among all ALV-J proteins, enhancing ALV-J p15 polyubiquitination. Additionally, we identified 26 lysine residues of ALV-J p15 as key sites for ubiquitination, and their replacement with arginine attenuated the replication ability of ALV-J in both in vitro and in vivo assays. This study demonstrates that Cables1 is a critical replication-dependent host factor of ALV-J by enhancing p15 ubiquitination and thereby promoting viral replication. Overall, these findings contribute to a deeper understanding of the ALJ-V replication mechanism and offer a potential target for the prevention and control of ALV-J infection.

2.
J Virol ; 98(5): e0018124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639485

RESUMEN

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Autofagia , Infecciones por Birnaviridae , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa , Proteínas Estructurales Virales , Replicación Viral , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Animales , Infecciones por Birnaviridae/virología , Infecciones por Birnaviridae/metabolismo , Proteínas Estructurales Virales/metabolismo , Proteínas Estructurales Virales/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/metabolismo , Interacciones Huésped-Patógeno , Células HEK293 , Humanos , Línea Celular
3.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28592532

RESUMEN

Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus. Segment A contains two overlapping open reading frames (ORFs), which encode viral proteins VP2, VP3, VP4, and VP5. Segment B contains one ORF and encodes the viral RNA-dependent RNA polymerase, VP1. IBDV ribonucleoprotein complexes are composed of VP1, VP3, and dsRNA and play a critical role in mediating viral replication and transcription during the virus life cycle. In the present study, we identified a cellular factor, VDAC1, which was upregulated during IBDV infection and found to mediate IBDV polymerase activity. VDAC1 senses IBDV infection by interacting with viral proteins VP1 and VP3. This association is caused by RNA bridging, and all three proteins colocalize in the cytoplasm. Furthermore, small interfering RNA (siRNA)-mediated downregulation of VDAC1 resulted in a reduction in viral polymerase activity and a subsequent decrease in viral yield. Moreover, overexpression of VDAC1 enhanced IBDV polymerase activity. We also found that the viral protein VP3 can replace segment A to execute polymerase activity. A previous study showed that mutations in the C terminus of VP3 directly influence the formation of VP1-VP3 complexes. Our immunoprecipitation experiments demonstrated that protein-protein interactions between VDAC1 and VP3 and between VDAC1 and VP1 play a role in stabilizing the interaction between VP3 and VP1, further promoting IBDV polymerase activity.IMPORTANCE The cellular factor VDAC1 controls the entry and exit of mitochondrial metabolites and plays a pivotal role during intrinsic apoptosis by mediating the release of many apoptogenic molecules. Here we identify a novel role of VDAC1, showing that VDAC1 interacts with IBDV ribonucleoproteins (RNPs) and facilitates IBDV replication by enhancing IBDV polymerase activity through its ability to stabilize interactions in RNP complexes. To our knowledge, this is the first report that VDAC1 is specifically involved in regulating IBDV RNA polymerase activity, providing novel insight into virus-host interactions.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Ribonucleoproteínas/metabolismo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Línea Celular , Pollos , Inmunoprecipitación , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Polimerasa Dependiente del ARN/metabolismo
4.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27974565

RESUMEN

Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3+ autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions.IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.


Asunto(s)
Autofagia , Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Enfermedades de las Aves de Corral/virología , Vacuolas/virología , Animales , Infecciones por Birnaviridae/virología , Línea Celular , Embrión de Pollo , Interacciones Huésped-Patógeno , Evasión Inmune , Inmunidad Innata , Transducción de Señal , Vacuolas/fisiología , Internalización del Virus , Liberación del Virus , Replicación Viral
5.
Vaccines (Basel) ; 12(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39340077

RESUMEN

The chicken infectious anemia virus (CIAV) has been reported in major poultry-producing countries and poses a significant threat to the poultry industry worldwide. In this study, two Marek's disease virus (MDV) recombinants, rMDV-CIAV-1 and rMDV-CIAV-2, were generated by inserting the CIAV VP1 and VP2 genes into the MDV vaccine strain 814 at the US2 site using the fosmid-based rescue system. For rMDV-CIAV-1, an internal ribosome entry site was inserted between VP1 and VP2, so that both proteins were produced from a single open reading frame. In rMDV-CIAV-2, VP1 and VP2 were cloned into different open reading frames and inserted into the MDV genome. The recombinant viruses simultaneously expressed VP1 and VP2 in infected chicken embryo fibroblasts and exhibited growth kinetics similar to those of the parent MDV. The two recombinant viruses induced antibodies against CIAV in chickens. A single dose of the recombinant viruses provided strong protection against CIAV-induced anemia in chickens. These recombinant VP1- and VP2-expressing MDVs are potential vaccines against CIAV in chickens.

6.
Vet Microbiol ; 298: 110242, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243669

RESUMEN

The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.

7.
Front Vet Sci ; 11: 1461116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301286

RESUMEN

Avian reoviruses (ARVs) cause viral arthritis or tenosynovitis, resulting in poor weight gain and increased feed conversion ratios in chickens. In this study, we generated three Marek's disease virus (MDV) recombinants, namely, rMDV-ARV-σB, rMDV-ARV-σC, and rMDV-ARV-σB + C, expressing ARV σB, σC, and both σB and σC, respectively. In rMDV-ARV-σB and rMDV-ARV-σC, the σB or σC gene was inserted into the US2 gene of MDV vaccine strain 814 using a fosmid-based rescue system. In rMDV-ARV-σB + C, the σB and σC genes were cloned into different expression cassettes, which were co-inserted into the US2 gene of the MDV 814 strain. In infected chicken embryo fibroblasts (CEFs), the recombinant virus rMDV-ARV-σB expressed σB, rMDV-ARV-σC expressed σC, and the rMDV-ARV-σB + C virus simultaneously expressed σB and σC. These recombinant viruses exhibited growth kinetics in CEFs similar to those of the parent MDV, and the inserted genes were stably maintained and expressed in the recombinant MDVs after 20 passages in cell cultures. These recombinant MDVs expressing σB and σC will provide potential vaccines against ARV infection in chickens.

8.
Dev Comp Immunol ; 122: 104129, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33989682

RESUMEN

In the current study, zebrafish TNF-α1 (zTNF-α1) was crystallized, and the structure was analyzed. The zTNF-α1 trimer is composed of three monomers whose height and width are 50 Å and 60 Å, respectively. Compared with human TNF-α, zTNF-α1 shows only ~30% amino acid identity, the EF loop of each monomer lacks three amino acids, the CD loop is increased by four amino acids, and the AA'' loop is increased by one amino acid. In addition, an A″-ß-chain is added to the zTNF-α1 monomer, forming two ß-sheet layers with 6:5 ß-chains. The top of the trimer is missing three amino acids and the inner coil because the EF loop seals the central hole at the top, forming a unique structure. In conclusion, the results elucidated the structure of the zTNF-α1 trimer, providing immunological knowledge for studying TNF-α function in the zebrafish animal model and structural information for exploring TNF-α family evolution.


Asunto(s)
Estructura Cuaternaria de Proteína , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Modelos Moleculares , Multimerización de Proteína/genética , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA