Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; 300(1): 105542, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072058

RESUMEN

The gastric proton pump (H+,K+-ATPase) transports a proton into the stomach lumen for every K+ ion exchanged in the opposite direction. In the lumen-facing state of the pump (E2), the pump selectively binds K+ despite the presence of a 10-fold higher concentration of Na+. The molecular basis for the ion selectivity of the pump is unknown. Using molecular dynamics simulations, free energy calculations, and Na+ and K+-dependent ATPase activity assays, we demonstrate that the K+ selectivity of the pump depends upon the simultaneous protonation of the acidic residues E343 and E795 in the ion-binding site. We also show that when E936 is protonated, the pump becomes Na+ sensitive. The protonation-mimetic mutant E936Q exhibits weak Na+-activated ATPase activity. A 2.5-Å resolution cryo-EM structure of the E936Q mutant in the K+-occluded E2-Pi form shows, however, no significant structural difference compared with wildtype except less-than-ideal coordination of K+ in the mutant. The selectivity toward a specific ion correlates with a more rigid and less fluctuating ion-binding site. Despite being exposed to a pH of 1, the fundamental principle driving the K+ ion selectivity of H+,K+-ATPase is similar to that of Na+,K+-ATPase: the ionization states of the acidic residues in the ion-binding sites determine ion selectivity. Unlike the Na+,K+-ATPase, however, protonation of an ion-binding glutamate residue (E936) confers Na+ sensitivity.


Asunto(s)
Simulación de Dinámica Molecular , Potasio , Potasio/metabolismo , Estómago , Sitios de Unión , Sodio/metabolismo , Adenosina Trifosfatasas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo
2.
Luminescence ; 38(9): 1591-1596, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37329119

RESUMEN

Here, the synthesis and luminescence analysis of the Tb3+ -activated phosphor were reported. The CaY2 O4 phosphors were synthesized using a modified solid-state reaction method with a variable doping concentration of Tb3+ ion (0.1-2.5 mol%). As synthesized, the phosphor was characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis techniques for the optimized concentration of doping ions. The prepared phosphor showed a cubic structure, and FTIR analysis confirmed functional group analysis. It was discovered that the intensity of 1.5 mol% was higher than at other concentrations after the photoluminescence (PL) excitation and emission spectra were recorded for different concentrations of doping ions. The excitation was monitored at 542 nm, and the emission was monitored at 237 nm. At 237 nm excitation, the emission peaks were found at 620 nm (5 D4 →7 F3 ), 582 nm (5 D4 →7 F4 ), 542 nm (5 D4 →7 F5 ), and 484 nm (5 D4 →7 F6 ). The 1931 CIE (x, y) chromaticity coordinates showed the distribution of the spectral region calculated from the PL emission spectra. The values of (x = 0.34 and y = 0.60) were very close to dark green emission. Therefore, the produced phosphor would be very useful for light-emitting diode (green component) applications. Thermoluminescence glow curve analysis for various concentrations of doping ions and various ultraviolet (UV) exposure times was carried out, and a single broad peak was found at 252°C. The computerized glow curve deconvolution method was used to obtain the related kinetic parameters. The prepared phosphor exhibited an excellent response to UV dose and could be useful for UV ray dosimetry.


Asunto(s)
Luminiscencia , Rayos Ultravioleta , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier
3.
Phys Chem Chem Phys ; 24(31): 18738-18750, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900000

RESUMEN

A series of experimental and simulation studies examined the validity of the Stokes-Einstein relationship (SER) of water in binary water/alcohol mixtures of different mixture compositions. These studies revealed a strong non-monotonic composition dependence of the SER with maxima at the specific alcohol mole fraction where the non-idealities of the thermodynamic and transport properties are observed. The translational jump-diffusion (TJD) approach elucidated the breakdown of the SER in pure supercooled water as caused by the jump translation of molecules. The breakdown of SER in the supercooled water/methanol binary mixture was successfully explained using the same TJD approach. To further generalize the picture, here we focus on the non-monotonic composition dependence of SER breakdown of water in two water/alcohol mixtures (water/ethanol and water/propanol) for a broad temperature range. In agreement with previous studies, maximum breakdown of SER is observed for the mixture with alcohol mole fraction x = 0.2. Diffusion of the water molecules at the maximum SER breakdown point is largely contributed by jump-diffusion. The residual-diffusion, obtained by subtracting the jump-diffusion from the total diffusion, approximately follows the SER for different compositions and temperatures. We also performed hydrogen (H-)bond dynamics and observed that the contribution of jump-diffusion is proportional to the total free energy of activation of breaking all H-bonds that exist around a molecule. This study, therefore, suggests that the more a molecule is trapped by H-bonding, the more likely it is to diffuse through the jump-diffusion mechanism, eventually leading to an increasing degree of SER breakdown.

4.
Luminescence ; 37(8): 1284-1289, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35614866

RESUMEN

In this paper, we present new aspects of Sm3+ -doped pure Li2 CaSiO4 as a suitable candidate for white light emitting diode (WLED) applications. The samples were mainly prepared using a conventional modified solid-state synthesis technique. The structural studies were done using X-ray diffraction and Rietveld refinement. Instruments such as a scanning electron microscope (SEM) were used to obtain information about the morphology of the as-prepared samples. Photoluminescence (PL) analysis of phosphor samples for variable concentrations of doping ions with variable excitations were presented. When doped with Sm3+ in host Li2 CaSiO4 it emitted intense blue, green and red emissions and a more intense red emission peak (605 nm) under 408 nm excitation (near-UV-blue). Our study shows that the as-prepared phosphor may be useful for optical devices and mainly for WLEDs. The corresponding transitions of doping ions and concentration quenching effect were studied in detail. The 1931 Commission Internationale de l'Eclairage (x, y) chromaticity coordinates showed the distribution of spectral regions calculated from PL emission spectra and this was found (0.63, 0.36) in the red region, so the phosphor may be useful for near-UV-blue excited WLED applications.

5.
PLoS Comput Biol ; 16(10): e1007554, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33021976

RESUMEN

Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane.


Asunto(s)
Colesterol , Péptidos y Proteínas de Señalización Intracelular , Colesterol/química , Colesterol/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Modelos Moleculares , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C , Unión Proteica , Dominios Proteicos
6.
Phys Chem Chem Phys ; 23(36): 19964-19986, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34515269

RESUMEN

Although water is the most ubiquitous liquid it shows many thermodynamic and dynamic anomalies. Some of the anomalies further intensify in the supercooled regime. While many experimental and theoretical studies have focused on the thermodynamic anomalies of supercooled water, fewer studies explored the dynamical anomalies very extensively. This is due to the intricacy of the experimental measurement of the dynamical properties of supercooled water. Violation of the Stokes-Einstein relation (SER), an important relation connecting the diffusion of particles with the viscosity of the medium, is one of the major dynamical anomalies. In absence of experimentally measured viscosity, researchers used to check the validity of SER indirectly using average translational relaxation time or α-relaxation time. Very recently, the viscosity of supercooled water was accurately measured at a wide range of temperatures and pressures. This allowed direct verification of the SER at different temperature-pressure thermodynamic state points. An increasing breakdown of the SER was observed with decreasing temperature. Increasing pressure reduces the extent of breakdown. Although some well-known theories explained the above breakdown, a detailed molecular mechanism was still elusive. Recently, a translational jump-diffusion (TJD) approach has been able to quantitatively explain the breakdown of the SER in pure supercooled water and an aqueous solution of methanol. The objective of this article is to present a detailed and state-of-the-art analysis of the past and present works on the breakdown of SER in supercooled water with a specific focus on the new TJD approach for explaining the breakdown of the SER.

7.
Luminescence ; 36(6): 1507-1512, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34048636

RESUMEN

Here, we report the photoluminescence and thermoluminescent properties of Dy-activated Ca2 ZnSi2 O7 phosphors synthesized using the solid-state method. The synthesized phosphors showed hardystonite type structure, and had micron-sized particles. Fourier transform infrared spectroscopy (FTIR) showed the existence of the functional groups and confirmed the formation of phosphor and photoluminescence techniques. The phosphors under excitation at 239 nm exhibited green-yellow emission spectra in the region 481-575 nm corresponding to the 4 F9/2 →6 H15/2 and 4 F9/2 →6 H13/2 transitions of Dy3+ ions. The Commission Internationale de l'Eclairage (CIE) coordinates were achieved to be (0.25, 0.27), which was narrowly close to the white region. Thermoluminescence (TL) glow curve analysis of prepared Dy3+ -activated Ca2 ZnSi2 O7 phosphors were recorded for different ultraviolet (UV) light exposure times and found to have a linear response with dose. The TL glow curves, recorded with various UV exposure times ranging from 5 to 25 min, showed a linear response with dosage. The corresponding kinetic parameters were also calculated using a computerized glow curve deconvolution (CGCD) technique. Activation energy was observed to enhance the increase in the peak temperature and its value was substantially higher for the third peak fitted using CGCD. The obtained results indicated that the synthesized pristine phosphors could be potentially used for lighting, displays, and dosimetric applications.


Asunto(s)
Luz , Luminiscencia , Silicatos , Rayos Ultravioleta , Difracción de Rayos X
8.
J Fluoresc ; 30(4): 819-825, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32430863

RESUMEN

In the present report, thermally stimulated luminescence (TSL) of quartz and limestone samples irradiated with ß and γ-rays has been investigated. Herein the formation of trap depths and calculation of kinetic parameters of ß and γ - irradiated quartz and limestone samples were studied through thermoluminescence (TL) glow curve analyses. The quartz and limestone samples were collected from various sites of Chhattisgarh (Patharia and Dalli-Rajhara mines). The collected raw samples were annealed at 400 °C. The phase formation of collected samples is confirmed by X-ray diffraction studies. The grain sizes of the samples are determined by using Debye-Scherrer formula. TL glow curves of the collected samples were recorded for various doses of ß and γ-rays. Kinetic parameters such as order of kinetics frequency factor and trap depth were calculated by employing CGCD methods. A comparative study on the TL properties of the geological materials under ß and γ-irradiation was done. The trap model analysis was executed to determine the nature of traps responsible for dominant TL peaks of ß and γ-irradiated limestone and quartz samples.

9.
Phys Chem Chem Phys ; 21(2): 800-812, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30556081

RESUMEN

Glycerol, as a cosolvent of water, stabilizes proteins under extreme conditions (both at high and low temperatures). However, the mechanism of stabilization of proteins by glycerol at low temperature is still elusive. Because the decrease of hydrophobic interactions at a lower temperature is one of the crucial factors for the cold denaturation, we ask here whether glycerol protects the hydrophobic interactions upon cooling and thereby acts against cold denaturation. Here, we have performed potential of mean force (PMF) calculations, using the umbrella sampling technique, between a pair of methane hydrophobic solute molecules either in pure water or in binary mixtures of water and glycerol for two different compositions and each of them at four different temperatures. We have found that glycerol increases the pair hydrophobic interaction at all the temperatures studied and that the enhancement is more prominent at the lower temperatures studied here. Decomposition of the PMF into the enthalpic and the entropic components and detailed molecular structural analyses give insight into the above observation. We have found that the enhancement of the hydrophobic interaction with increasing glycerol concentration occurs primarily due to the strengthening of the glycerol-water interaction near the associated methane solute molecule pair and the tetrahedral ordering of the H-bonding network being made uniform around the solute by the added glycerol molecules. These results indirectly justify the efficacy of glycerol for the preservation of proteins against cold denaturation at low temperature.


Asunto(s)
Frío , Glicerol/química , Proteínas/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica
10.
Biochim Biophys Acta Biomembr ; 1860(6): 1282-1291, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29522705

RESUMEN

The Na+,K+-ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31P and 2H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations.


Asunto(s)
Membrana Celular/química , ATPasa Intercambiadora de Sodio-Potasio/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Polilisina/química , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Sus scrofa
11.
J Fluoresc ; 26(1): 105-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498457

RESUMEN

In this review we have studied number of research papers related to white light emission from Dy3+ doped different host matrices. It is observed that most of the Dy3+doped aluminates, silicates, borates etc., emitted blue, green and red colour with specific intensities so that CIE coordinates, appeared near to white light. Correlated Colour Temperature(CCT) values of these phosphors expressed that the white light emission produced, was adaptable to human eyes. Dy3+ ions act as activator in each case. Four peaks at approximately 480,575, 670, and 757 nm could be seen in most of the Dy3+ doped phosphors. Expected transition responsible for these peaks are 4F9/2 → 6H15/2 (Blue Colour), 4F9/2 → 6H13/2 (Green-Yellow Colour), 4F9/2 → 6H11/2 (Red Colour) and 4F9/2 → 6H9/2(Brownish Red Colour). Few of the discussed phosphors exhibited long phosphorescence, starting from several minutes to few hours. Mechanism responsible for long lasting white light emission was also discussed. Five different factors, to recognize the phosphors for its suitability as commercial white light phosphor have been discussed.

12.
J Fluoresc ; 26(4): 1309-15, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27184974

RESUMEN

Behaviour displayed by mechanoluminescence (ML) in CaZrO3:Eu(3+) doped phosphors with variable concentration of europium ions are described. When the ML is excited impulsively by the impact of a load on the phosphors the ML intensity increases with time, attains a maximum value and then it decreases. In the ML intensity versus time curve, the peak increases and shifts towards shorter time values with increasing impact velocities. Sample was synthesized by combustion synthesis method with variable concentration of Eu(3+) ions (0.1, 0.2, 0.5, 1, 1.5 mol%) and characterized by X-ray diffraction technique. The total ML intensity IT is defined as the area below the ML intensity versus time curve. Initially IT increases with impact velocity V0 of the load and then it attains a saturation value for higher values of impact velocities which follow the relation IT = IT (0) exp.(-Vc/V0) where IT (0) and Vc are constants. Total ML intensity increases linearly with the mass of the phosphors for higher impact velocities. The ML intensity Im, corresponding to the peak of ML intensity versus time curve increases linearly with the impact velocities. The time tm, is found to be linearly related to 1000/V0. The mechanoluminescence induced by impulsive excitation in europium doped CaZrO3 phosphors plays a significance role in the understanding of biological sensors and display device application.

13.
J Fluoresc ; 26(3): 791-806, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26856601

RESUMEN

Photoluminescence studies of pure and Dy(3+), Eu(3+) doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce(4+) ions. Emission spectra of Sr2CeO4 with different concentration of Dy(3+) ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy(3+) ions, and it increases with adding some percentages of Dy(3+) ions. The maximum doping concentration for quenching is found to be Dy(3+) = 0.2 mol % to Sr(2+)ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between (4)F9/2 → (6)H15/2 of Dy(3+) ions. Secondly the effect of Eu(3+) doping at the Sr(2+) site in Sr2CeO4, have been studied. The results obtained by doping Eu(3+) concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce(4+) and Eu(3+). The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu(3+) concentration. The results establish that the compound Sr2CeO4 with Eu(3+) = 1 mol% is an efficient "single host lattice" for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I'Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.

14.
Luminescence ; 31(3): 837-42, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26456020

RESUMEN

The near-infrared-to-visible upconversion luminescence behaviour of Er(3+)-doped CaZrO3 phosphor is discussed in this manuscript. The phosphor was prepared by a combustion synthesis technique that is suitable for less-time-taking techniques for nanophosphors. The starting materials used for sample preparation were Ca(NO3)2.4H2O, Zr(NO3)4 and Er(NO3)2, and urea was used as a fuel. The prepared sample was characterized by X-ray diffraction (XRD). The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). The functional group analysis was determined by Fourier transform infrared (FTIR) spectroscopy. All prepared phosphors with variable Er(3+) concentrations (0.5-2.5 mol%) were studied by photoluminescence analysis. It was found that the excitation spectra of the prepared phosphor showed a sharp excitation peak centred at 980 nm. The emission spectra with variable Er(3+) concentrations showed strong peaks in the 555 nm and 567 nm range, with a dominant peak at 555 nm due to the ((2)H(11/2),(4)S(3/2)) transition and a weaker transition at 567 nm associated with 527 nm. Spectrophotometric determination of the peak was evaluated by the Commission Internationale de I'Eclairage (CIE) method These upconverted emissions were attributed to a two-photon process. The excitation wavelength dependence of the upconverted luminescence, together with its time evolution after infrared pulsed excitation, suggested that energy transfer upconversion processes were responsible for the upconversion luminescence. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer processes were discussed as possible upconversion mechanisms. The cross-relaxation process in Er(3+) was also investigated.


Asunto(s)
Calcio/química , Erbio/química , Rayos Infrarrojos , Luminiscencia , Oxígeno/química , Circonio/química
15.
Luminescence ; 30(6): 883-90, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25669489

RESUMEN

When II-VI semiconductors are fractured, initially the mechanoluminescence (ML) intensity increases with time, attains a maximum value Im at a time tm, at which the fracture is completed. After tm, the ML intensity decreases with time, Im increase linearly with the impact velocity v0 and IT initially increase linearly with v0 and then it attains a saturation value for a higher value of v0. For photoluminescence, the temperature dependence comes mainly from luminescence efficiency, ηo; however, for the ML excitation, there is an additional factor, rt dependent on temperature. During fracture, charged dislocations moving near the tip of moving cracks produce intense electric field, causes band bending. Consequently, tunneling of electrons from filled electron traps to the conduction band takes place, whereby the radiative electron-hole recombination give rise to the luminescence. In the proposed mechanism, expressions are derived for the rise, the time tm corresponding to the ML intensity versus time curve, the ML intensity Im corresponding to the peak of ML intensity versus time curve, the total fracto-mechanoluminescence (FML) intensity IT, and fast and slow decay of FML intensity of II-VI semiconductors. The FML plays a significant role in understanding the processes involved in biological detection, earthquake lights and mine failure.


Asunto(s)
Luminiscencia , Semiconductores , Modelos Teóricos , Temperatura
16.
RSC Adv ; 13(38): 26357-26365, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37671341

RESUMEN

The solid-state reaction method was utilised to create a down-conversion phosphor in an air environment in CaY2O4:Eu3+ nanocrystalline material. The calcination temperature was set at 1000 °C, and the sintering temperature was set at 1300 °C. Following annealing, confirmation of the crystallinity quality of the phosphor was accomplished by the use of X-ray diffraction analysis. The particle size was predicted to be 43.113 nm using Scherrer's formula. To produce down-conversion luminescence spectra, an excitation wavelength of 247 nm was applied with a fluorescence spectrophotometer. The PL got increasingly intense as the concentration of the dopant increased. The maximum intensity was measured at 2.0 mol% of Eu3+ ion, which gradually decreased as the concentration increased because of concentration quenching. To analyse spectrophotometric peak determinations, the approach developed by the Commission Internationale de l'Éclairage (CIE) was used. Thermoluminescence (TL) glow curve analysis of the CaY2O4:Eu3+-doped phosphor manufactured here revealed a wide TL centred at 225 °C, which comprised of so many peaks that may be extracted by the computerised glow curve deconvolution (CGCD) approach using glow-fit software. The associated kinetic parameters were then determined. The prepared phosphor may be useful for application in various display devices upon excitation by 247 nm; the prominent 613 nm peak of the Eu3+ ion (5D0 → 7F2) electric dipole transition features a red component. CaY2O4:Eu3+ phosphors show promise as materials for potential use in phosphor-converted white LEDs in the field of solid-state lighting technology. The linear connection that the TL glow curve has with UV dose provides evidence for its possible use in dosimetry.

17.
RSC Adv ; 13(29): 20217-20228, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37416907

RESUMEN

This research paper reports the synthesis and luminescence study of an Eu3+ activated SrY2O4 phosphor prepared by a modified solid-state reaction method with varying concentrations of Eu3+ ions (0.1-2.5 mol%). X-ray diffraction (XRD) revealed the orthorhombic structure and Fourier transform infrared spectroscopy (FTIR) methods were used to analyse the produced phosphors. Photoluminescence emission and excitation spectra were recorded for varying concentrations of Eu3+ ions, and an optimum concentration of 2.0 mol% was found to produce the highest intensity. Under 254 nm excitation the emission peaks were found to be at 580 nm, 590 nm, 611 nm and 619 nm, corresponding to transitions at 5D0 → 7F0, 5D0 → 7F1, and 5D0 → 7F2 respectively. Because of Eu3+ inherent luminosity, these emission peaks indicate radiative transitions between excited states of ions, making them useful for developing white light-emitting phosphors for optoelectronic and flexible display applications. The 1931 CIE (x, y) chromaticity coordinates were calculated from the photoluminescence emission spectra and found to be near white light emission, indicating the potential application of the prepared phosphor for light emitting diodes (white component). TL glow curve analysis was also performed for various concentrations of doping ions and UV exposure times, and a single broad peak was observed at 187 °C. Using the computerised glow curve deconvolution (CGCD) method, kinetic parameters were computed.

18.
J Phys Chem B ; 126(12): 2430-2440, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35294202

RESUMEN

Earlier, ab initio and reactive force-field-based molecular dynamics (MD) simulation studies suggested an overwhelming contribution of the vehicular diffusion in the total diffusion of hydroxide ions rather than structural diffusion. But does the vehicular diffusion occur via small-step displacement? This question is important to have an understanding of the real characteristics of vehicular diffusion. To answer this question, we perform a classical molecular dynamics simulation of a system containing a hydroxide ion exchange membrane polymer and hydroxide ion at different hydration levels and temperatures using the same molecular force field (Dubey, V. Chem. Phys. Lett. 2020, 755, 137802), which successfully captured the microscopic structure and dynamics of the system. We use the translational jump-diffusion approach, used previously in supercooled water for understanding the origin of breakdown of the Stokes-Einstein relation, to calculate the jump-diffusion coefficient of hydroxide ion and water in the anion exchange membrane. We have seen a significant role of hydration level and temperature in the mechanism of vehicular diffusion. In overhydrated membrane, both hydroxide ions and water molecules diffuse via both small- and large-step displacement. With decreasing hydration level and temperature, the diffusion is increasingly governed by the jump-diffusion mechanism. The larger contribution of jump-diffusion comes from the stronger caging of the diffusing species by the solvent at lower hydration levels and temperature. These results, therefore, suggest that the hydration level and temperature of the hydroxide ion exchange membrane determine the detailed mechanism of the vehicular diffusion of hydroxide ion, especially whether the diffusion follows hydrodynamics or not.


Asunto(s)
Hidróxidos , Agua , Difusión , Simulación de Dinámica Molecular , Agua/química
20.
J Mol Biol ; 433(15): 167008, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33951450

RESUMEN

The heterotetrameric bacterial KdpFABC transmembrane protein complex is an ion channel-pump hybrid that consumes ATP to import K+ against its transmembrane chemical potential gradient in low external K+ environments. The KdpB ion-pump subunit of KdpFABC is a P-type ATPase, and catalyses ATP hydrolysis. Under high external K+ conditions, K+ can diffuse into the cells through passive ion channels. KdpFABC must therefore be inhibited in high K+ conditions to conserve cellular ATP. Inhibition is thought to occur via unusual phosphorylation of residue Ser162 of the TGES motif of the cytoplasmic A domain. It is proposed that phosphorylation most likely traps KdpB in an inactive E1-P like conformation, but the molecular mechanism of phosphorylation-mediated inhibition remains unknown. Here, we employ molecular dynamics (MD) simulations of the dephosphorylated and phosphorylated versions of KdpFABC to demonstrate that phosphorylated KdpB is trapped in a conformation where the ion-binding site is hydrated by an intracellular pathway between transmembrane helices M1 and M2 which opens in response to the rearrangement of cytoplasmic domains resulting from phosphorylation. Cytoplasmic access of water to the ion-binding site is accompanied by a remarkable loss of secondary structure of the KdpB N-terminus and disruption of a key salt bridge between Glu87 in the A domain and Arg212 in the P domain. Our results provide the molecular basis of a unique mechanism of regulation amongst P-type ATPases, and suggest that the N-terminus has a significant role to play in the conformational cycle and regulation of KdpFABC.


Asunto(s)
Bacterias/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Adenosina Trifosfato/química , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Citoplasma/metabolismo , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Fosforilación , Dominios Proteicos , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA