Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biochemistry ; 57(8): 1285-1292, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29377675

RESUMEN

The amyloid-based yeast prions are folded in-register parallel ß-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.


Asunto(s)
Inositol/metabolismo , Polifosfatos/metabolismo , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Curr Genet ; 64(3): 571-574, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29243174

RESUMEN

The [PSI+] prion is a folded in-register parallel ß-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.


Asunto(s)
Inositol/química , Polifosfatos/metabolismo , Priones/genética , Metabolismo Energético , Polifosfatos/química , Biosíntesis de Proteínas , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero , Transcripción Genética
3.
Plant Physiol ; 171(3): 1879-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208262

RESUMEN

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Cianobacterias/metabolismo , Glucógeno/metabolismo , Almidón Sintasa/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glucógeno/química , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Mutación , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Synechocystis/genética , Synechocystis/metabolismo
4.
Biochim Biophys Acta ; 1847(6-7): 495-504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25687892

RESUMEN

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.


Asunto(s)
Chlamydiales/fisiología , Plantas/microbiología , Plastidios/microbiología , Simbiosis , Evolución Biológica , Interacciones Huésped-Patógeno
5.
Plant Cell ; 25(10): 3961-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24163312

RESUMEN

Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.


Asunto(s)
Evolución Biológica , Cianobacterias/enzimología , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glucógeno/metabolismo , Oryza/enzimología , Almidón/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cianobacterias/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Mutagénesis , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Commun Biol ; 4(1): 296, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674787

RESUMEN

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Asunto(s)
Chlamydiales/metabolismo , Glucógeno/metabolismo , Glucogenólisis , Polisacáridos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidad , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Cinética , Filogenia , Virulencia
7.
J Mol Biol ; 430(20): 3707-3719, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29698650

RESUMEN

Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel ß-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.


Asunto(s)
Amiloide/metabolismo , Proteínas Fúngicas/metabolismo , Priones/metabolismo , Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Evolución Biológica , Proteínas Fúngicas/química , Humanos , Priones/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
8.
Artículo en Inglés | MEDLINE | ID: mdl-27446814

RESUMEN

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.


Asunto(s)
Chlamydia/metabolismo , Plastidios/metabolismo , Plastidios/microbiología , Triptófano/deficiencia , Triptófano/metabolismo , Aminoácidos/metabolismo , Evolución Biológica , Chlamydia/enzimología , Chlamydia/genética , Cianobacterias/metabolismo , Escherichia coli/metabolismo , Transferencia de Gen Horizontal , Interacciones Huésped-Patógeno , Filogenia , Plantas/enzimología , Plantas/metabolismo , Plantas/microbiología , Plastidios/genética , Simbiosis , Triptófano/biosíntesis , Triptófano/genética
9.
Elife ; 5: e12552, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26981769

RESUMEN

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.


Asunto(s)
Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno/metabolismo , Interacciones Huésped-Patógeno , Vacuolas/química , Vacuolas/microbiología , Animales , Proteínas Bacterianas/metabolismo , Transporte Biológico , Línea Celular , Humanos , Proteínas de Transporte de Nucleótidos/metabolismo , Uridina Difosfato Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA