RESUMEN
Continuum- or discrete-polarizable models for the study of optoelectronic processes in embedded subsystems rely mostly on the restriction of the surrounding electronic dielectric response to its low frequency limit. Such a description hinges on the assumption that the electrons in the surrounding medium react instantaneously to any excitation in the central subsystem, thus treating the environment in the adiabatic limit. Exploiting a recently developed embedded GW formalism with an environment described at the fully ab initio level, we assess the merits of the adiabatic limit with respect to an environment where the full dynamics of the dielectric response are considered. Furthermore, we show how to properly take the static limit of the environment's susceptibility by introducing the so-called Coulomb-hole and screened-exchange contributions to the reaction field. As a first application, we consider a C60 molecule at the surface of a C60 crystal, namely, a case where the dynamics of the embedded and embedding subsystems are similar. The common adiabatic assumption, when properly treated, generates errors below 10% on the polarization energy associated with frontier energy levels and associated energy gaps. Finally, we consider a water molecule inside a metallic nanotube, the worst case for the environment's adiabatic limit. The error on the gap polarization energy remains below 10%, even though the error on the frontier orbital polarization energies can reach a few tenths of an electronvolt.
RESUMEN
We study the accuracy of excited state (ES) geometries using optimally tuned LC-PBE functionals with tuning based on GW quasiparticle energies. We compare the results obtained with the PBE, PBE0, non-tuned, and tuned LC-PBE functionals with available high-level CC reference values as well as experimental data. First, we compare ES geometrical parameters obtained for three different types of systems: molecules composed of a few atoms, 4-(dimethylamino)benzonitrile (DMABN), and conjugated dyes. To this end, we used wave-function results as benchmarks. Next, we evaluate the accuracy of the theoretically simulated spectra as compared to the experimental ones for five large dyes. Our results show that, besides small compact molecules for which tuning LC-PBE does not allow obtaining geometries more accurate than those computed with standard functionals, tuned range-separated functionals are clearly to be favored, not only for ES geometries but also for 0-0 energies, band shapes, and intensities for absorption and emission spectra. In particular, the results indicate that GW-tuned LC-PBE functionals provide improved matching with experimental spectra as compared to conventionally tuned functionals. It is an open question whether TD-DFT with GW-tuned functionals can qualitatively mimic the actual many-body Bethe-Salpeter (BSE/GW) formalism for which analytic ionic gradients remain to be developed.
RESUMEN
In this work, we assess the accuracy of the Bethe-Salpeter equation (BSE) many-body Green's function formalism, adopting the eigenvalue-self-consistent evGW exchange-correlation kernel, for the calculation of the excited-state (µES) and excess dipole moments (Δµ), the latter ones being the changes of dipole amplitude between the ground and excited states (ES), in organic dyes. We compare the results obtained with wave-function methods [ADC(2), CC2, and CCSD], time-dependent density functional theory (TD-DFT), and BSE/evGW levels of theory. First, we compute the evolution of the dipole moments of the two lowest singlet excited states of 4-(dimethylamino)benzonitrile (DMABN) upon twisting of the amino group. Next, we use a set of 25 dyes having ES characters ranging from locally excited to charge transfer to determine both µES and Δµ. For DMABN our results show that BSE/evGW provides Δµ values closer to the CCSD reference and more consistent trends than TD-DFT. Moreover, a statistical analysis of both Δµ and µES for the set of 25 dyes shows that the BSE/evGW accuracy is comparable or sometimes slightly better than that of TD-M06-2X and TD-CAM-B3LYP, BSE/evGW outperforming TD-DFT in challenging cases (zwitterionic and cyanine transitions). Finally, the starting point dependency of BSE/evGW seems to be larger for Δµ, ES dipoles, and oscillator strengths than for transition energies.
RESUMEN
The puzzling case of the mixing between the charge transfer (CT) and local excited (LE) characters upon twisting of the geometry of N-phenylpyrrole (N-PP) is investigated considering the six low-lying singlet excited states (ES). The theoretical calculations of the potential energy surfaces (PES) have been performed for these states using a Coupled Cluster method accounting for the impact of the contributions from the triples, many-body Green's function GW and Bethe-Salpeter equation (BSE) formalisms, as well as Time-Dependent Density Functional Theory (TD-DFT) using various exchange-correlation functionals. Our findings confirm that the BSE formalism is more reliable than TD-DFT for close-lying ES with mixed CT/LE nature. More specifically, BSE/GW yields a more accurate evolution of the excited state PES than TD-DFT when compared to the reference coupled cluster values. BSE/GW PES curves also show negligible exchange-correlation functional starting point dependency in sharp contrast with their TD-DFT counterparts.
RESUMEN
We present a method to compute the photoionization spectra of atoms and molecules in linear-response, time-dependent density functional theory. The electronic orbital variations corresponding to ionized electrons are expanded on a basis set of delocalized functions, obtained as the solution of the inhomogeneous Helmholtz equation, with gaussian basis set functions as the right-hand side. The resulting scheme is able to reproduce the photoionization spectra without any need for artificial regularization or localization. We demonstrate that this Green's function-based approach is able to produce accurate spectra for semilocal exchange-correlation functionals, even using relatively small standard gaussian basis sets.
RESUMEN
We present a many-body GW formalism for quantum subsystems embedded in discrete polarizable environments containing up to several hundred thousand atoms described at a fully ab initio random phase approximation level. Our approach is based on a fragment approximation in the construction of the Green's function and independent-electron susceptibilities. Further, the environing fragments susceptibility matrices are reduced to a minimal but accurate representation preserving low order polarizability tensors through a constrained minimization scheme. This approach dramatically reduces the cost associated with inverting the Dyson equation for the screened Coulomb potential W, while preserving the description of short to long-range screening effects. The efficiency and accuracy of the present scheme is exemplified in the paradigmatic cases of fullerene bulk, surface, subsurface, and slabs with varying number of layers.
RESUMEN
We present an implementation of excited-state analytic gradients within the Bethe-Salpeter equation formalism using an adapted Lagrangian Z-vector approach with a cost independent of the number of perturbations. We focus on excited-state electronic dipole moments associated with the derivatives of the excited-state energy with respect to an electric field. In this framework, we assess the accuracy of neglecting the screened Coulomb potential derivatives, a common approximation in the Bethe-Salpeter community, as well as the impact of replacing the GW quasiparticle energy gradients by their Kohn-Sham analogs. The pros and cons of these approaches are benchmarked using both a set of small molecules for which very accurate reference data are available and the challenging case of increasingly extended push-pull oligomer chains. The resulting approximate Bethe-Salpeter analytic gradients are shown to compare well with the most accurate time-dependent density-functional theory (TD-DFT) data, curing in particular most of the pathological cases encountered with TD-DFT when a nonoptimal exchange-correlation functional is used.
RESUMEN
We present a benchmark study of excited state potential energy surfaces (PES) using the many-body Green's function GW and Bethe-Salpeter equation (BSE) formalisms, coupled cluster methods, as well as Time-Dependent Density Functional Theory (TD-DFT). More specifically, we investigate the evolution of the two lowest excited states of 4-(dimethylamino)benzonitrile (DMABN) upon the twisting of the amino group, a paradigmatic system for dual fluorescence and excited-state benchmarks. Our results demonstrate that the BSE/GW approach is able to reproduce the correct topology of excited state PES upon geometry changes in both gas and condensed phases. The vertical transition energies predicted by BSE/GW are indeed in good agreement with coupled cluster values, including triples. The BSE approach ability to include both linear response and state-specific solvent corrections further enables it to accurately describe the solvatochromism of both excited states during the twisting of DMABN. This contribution stands as one of the first proof-of-concept that BSE/GW PES should be accurate in cases for which TD-DFT struggles, including the central case of systems embedded in a dielectric environment.
RESUMEN
We explore a separable resolution-of-the-identity (RI) formalism built on quadratures over limited sets of real-space points designed for all-electron calculations. Our implementation preserves, in particular, the use of common atomic orbitals and their related auxiliary basis sets. The setup of the present density fitting scheme, i.e., the calculation of the system specific quadrature weights, scales cubically with respect to the system size. Extensive accuracy tests are presented for the Fock exchange and MP2 correlation energies. We finally demonstrate random phase approximation (RPA) correlation energy calculations with a scaling that is cubic in terms of operations, quadratic in memory, with a small crossover with respect to our standard RI-RPA implementation.
RESUMEN
We review the many-body Green's function Bethe-Salpeter equation (BSE) formalism that is rapidly gaining importance for the study of the optical properties of molecular organic systems. We emphasize in particular its similarities and differences with time-dependent density functional theory (TD-DFT), both methods sharing the same formal O(N4) computing time scaling with system size. By comparison with higher level wavefunction based methods and experimental results, the advantages of BSE over TD-DFT are presented, including an accurate description of charge-transfer states and an improved accuracy for the challenging cyanine dyes. We further discuss the models that have been developed for including environmental effects. Finally, we summarize the challenges to be faced so that BSE reaches the same popularity as TD-DFT.
RESUMEN
The helium atom is the simplest many-body electronic system provided by nature. The exact solution to the Schrödinger equation is known for helium ground and excited states, and it represents a benchmark for any many-body methodology. Here, we check the ab initio many-body GW approximation and the Bethe-Salpeter equation (BSE) against the exact solution for helium. Starting from the Hartree-Fock method, we show that the GW and the BSE yield impressively accurate results on excitation energies and oscillator strength, systematically improving the time-dependent Hartree-Fock method. These findings suggest that the accuracy of the BSE and GW approximations is not significantly limited by self-interaction and self-screening problems even in this few electron limit. We further discuss our results in comparison to those obtained by time-dependent density-functional theory.
RESUMEN
Using a large panel of theoretical approaches, namely, CC2, CCSD, CCSDR(3), CC3, ADC(2), ADC(3), CASPT2, time-dependent density functional theory (TD-DFT), and BSE/evGW, the two latter combined with different exchange-correlation functionals, we investigate the lowest singlet transition in 23 nâπ* compounds based on the nitroso, thiocarbonyl, carbonyl, and diazo chromophores. First, for 16 small derivatives we compare the transition energies provided by the different wave function approaches to define theoretical best estimates. For this set, it surprisingly turned out that ADC(2) offers a better match with CC3 than ADC(3). Next, we use 10 functionals belonging to the "LYP" and "M06" families and compare the TD-DFT and the BSE/evGW descriptions. The BSE/evGW results are less sensitive than their TD-DFT counterparts to the selected functional, especially in the M06 series. Nevertheless, BSE/evGW delivers larger errors than TD-CAM-B3LYP, which provides extremely accurate results in the present case, especially when the Tamm-Dancoff approximation is applied. In addition, we show that, among the different starting points for BSE/evGW calculations, M06-2X eigenstates stand as the most appropriate. Finally, we confirm that the trends observed on the small compounds pertain in larger molecules.
RESUMEN
We present a theoretical investigation of the excited-state properties of a large series of structurally diverse arylcarbonium derivatives that are known to be challenging for theoretical models. More specifically, we compare the pros and cons of TD-DFT (TD-M06-2X), ADC(2), and BSE/GW approaches for a large panel of compounds, using two different solvent models. Both 0-0 and vertical transition energies are considered and compared to the experimental values. All approaches reasonably reproduce the auxochromic and acidochromic shifts, although in most cases both TD-DFT and BSE/GW return larger correlation with experimental values than ADC(2) for these shifts. In contrast, the absolute transition energies obtained with ADC(2) tend to be closer to the measurements, TD-DFT using the M06-2X functional largely overestimating the experimental references (by ca. 0.5 eV), and BSE/GW providing intermediate values. In addition, we show that the selected solvent model has a significant impact on the results, the corrected linear-response approach providing larger transition energies than its linear-response counterpart.
RESUMEN
We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.
Asunto(s)
Modelos Químicos , Adenina/química , Citosina/química , Electrones , Teoría Cuántica , Soluciones , Termodinámica , Timina/química , Uracilo/químicaRESUMEN
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H2O)n water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green's function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G0W0@PBE or G0W0@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G0W0 description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G0W0 and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.
RESUMEN
We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.
RESUMEN
We investigate the gate-induced onset of few-electron regime through the undoped channel of a silicon nanowire field-effect transistor. By combining low-temperature transport measurements and self-consistent calculations, we reveal the formation of one-dimensional conduction modes localized at the two upper edges of the channel. Charge traps in the gate dielectric cause electron localization along these edge modes, creating elongated quantum dots with characteristic lengths of â¼10 nm. We observe single-electron tunneling across two such dots in parallel, specifically one in each channel edge. We identify the filling of these quantum dots with the first few electrons, measuring addition energies of a few tens of millielectron volts and level spacings of the order of 1 meV, which we ascribe to the valley orbit splitting. The total removal of valley degeneracy leaves only a 2-fold spin degeneracy, making edge quantum dots potentially promising candidates for silicon spin qubits.
RESUMEN
We report on magnetotransport measurements in InAs nanowires under a large magnetic field (up to 55 T), providing a spectroscopy of the one-dimensional electronic band structure. Large modulations of the conductance mediated by a control of the Fermi energy reveal the Landau fragmentation, carrying the fingerprints of the confined InAs material. Our numerical simulations of the magnetic band structure consistently support the experimental results and reveal key parameters of the electronic confinement.
RESUMEN
The many-body GW formalism, for the calculation of ionization potentials or electronic affinities, relies on the frequency-dependent dielectric function built from the electronic degrees of freedom. Considering the case of water as a solvent treated within the polarizable continuum model, we explore the impact of restricting the full frequency-dependence of the solvent electronic dielectric response to a frequency-independent (쵰) optical dielectric constant. For solutes presenting small to large highest-occupied to lowest-unoccupied molecular orbital energy gaps, we show that such a restriction induces errors no larger than a few percent on the energy level shifts from the gas to the solvated phase. We further introduce a remarkably accurate single-pole model for mimicking the effect of the full frequency dependence of the water dielectric function in the visible-UV range. This allows a fully dynamical embedded GW calculation with the only knowledge of the cavity reaction field calculated for the 쵰 optical dielectric constant.
RESUMEN
We present an original multistate projective diabatization scheme based on Green's function formalisms that allows the systematic mapping of many-body ab initio calculations onto effective excitonic models. This method inherits the ability of the Bethe-Salpeter equation to describe Frenkel molecular excitons and intermolecular charge-transfer states equally well, as well as the possibility for an effective description of environmental effects in a QM/MM framework. The latter is found to be a crucial element in order to obtain accurate model parameters for condensed phases and to ensure their transferability to excitonic models for extended systems. The method is presented through a series of examples illustrating its quality, robustness, and internal consistency.