Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroimage ; 285: 120491, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070839

RESUMEN

Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.


Asunto(s)
Dióxido de Carbono , Hipercapnia , Adulto , Animales , Humanos , Macaca mulatta , Hipercapnia/diagnóstico por imagen , Marcadores de Spin , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología
2.
Am J Physiol Heart Circ Physiol ; 322(3): H474-H485, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35148233

RESUMEN

Accumulating evidence indicates a link between gut barrier dysfunction and hypertension. However, it is unclear whether hypertension causes gut barrier dysfunction or vice versa and whether the gut microbiome plays a role. To understand this relationship, we first cross-sectionally examined 153 nonhuman primates [NHPs; Chlorocebus aethiops sabaeus; mean age, 16 ± 0.4 yr; 129 (84.3%) females] for cardiometabolic risk factors and gut barrier function biomarkers. This analysis identified blood pressure and age as specific factors that independently associated with microbial translocation. We then longitudinally tracked male, age-matched spontaneously hypertensive NHPs (Macaca mulatta) to normotensives (n = 16), mean age of 5.8 ± 0.5 yr, to confirm hypertension-related gut barrier dysfunction and to explore the role of microbiome by comparing groups at baseline, 12, and 27 mo. Collectively, hypertensive animals in both studies showed evidence of gut barrier dysfunction (i.e., microbial translocation), as indicated by higher plasma levels of lipopolysaccharide-binding protein (LBP)-1, when compared with normotensive animals. Furthermore, plasma LBP-1 levels were correlated with diastolic blood pressure, independent of age and other health markers, suggesting specificity of the effect of hypertension on microbial translocation. In over 2 yr of longitudinal assessment, hypertensive animals had escalating plasma levels of LBP-1 and greater bacterial gene expression in mesenteric lymph nodes compared with normotensive animals, confirming microbes translocated across the intestinal barrier. Concomitantly, we identified distinct shifts in the gut microbial signature of hypertensive versus normotensive animals at 12 and 27 mo. These results suggest that hypertension contributes to microbial translocation in the gut and eventually unhealthy shifts in the gut microbiome, possibly contributing to poor health outcomes, providing further impetus for the management of hypertension.NEW & NOTEWORTHY Hypertension specifically had detrimental effects on microbial translocation when age and metabolic syndrome criteria were evaluated as drivers of cardiovascular disease in a relevant nonhuman primate model. Intestinal barrier function exponentially decayed over time with chronic hypertension, and microbial translocation was confirmed by detection of more microbial genes in regional draining lymph nodes. Chronic hypertension resulted in fecal microbial dysbiosis and elevations of the biomarker NT-proBNP. This study provides insights on the barrier dysfunction, dysbiosis, and hypertension in controlled studies of nonhuman primates. Our study includes a longitudinal component comparing naturally occurring hypertensive to normotensive primates to confirm microbial translocation and dysbiotic microbiome development. Hypertension is an underappreciated driver of subclinical endotoxemia that can drive chronic inflammatory diseases.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Microbiota , Animales , Chlorocebus aethiops , Disbiosis , Heces/microbiología , Femenino , Hipertensión/complicaciones , Masculino
3.
Int J Radiat Oncol Biol Phys ; 119(1): 208-218, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972714

RESUMEN

PURPOSE: Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques. METHODS AND MATERIALS: We used MRI scans from a cohort of male rhesus macaques (age range, 3.6-22.8 years) to compare global and regional brain volumes and WM diffusion in survivors of TBI (T1-weighted, n = 137; diffusion tensor imaging, n = 121; dose range, 3.5-10 Gy) with unirradiated controls (T1-weighted, n = 48; diffusion tensor imaging, n = 38). RESULTS: In all regions of interest, radiation affected age-related changes in fractional anisotropy, which tended to increase across age in both groups but to a lesser extent in the irradiated group (interaction P < .01). Depending on the region of interest, mean diffusivity decreased or remained the same across age in unirradiated animals, whereas it increased or did not change in irradiated animals. The increases in mean diffusivity were driven by changes in radial diffusivity, which followed similar trends across age. Axial diffusivity did not differ by irradiation status. Age-related changes in relative volumes in controls reflected normal trends in humans, with increasing WM and decreasing gray matter until middle age. Cerebrospinal fluid (CSF) volume did not differ across age in controls. WM volume was lower and CSF volume was higher in young irradiated macaques. WM volume was similar between groups, and CSF volume lower in older irradiated macaques. Gray matter volume was unaffected by radiation. CONCLUSIONS: TBI results in delayed WM expansion and long-term disruption of WM integrity. Diffusion changes suggest that myelin injury in WM is a hallmark of late-delayed radiation-induced brain injury.


Asunto(s)
Sustancia Blanca , Humanos , Persona de Mediana Edad , Animales , Masculino , Anciano , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Macaca mulatta , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
4.
Radiat Res ; 200(4): 321-330, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702414

RESUMEN

Testicular injury is a well-documented acute effect of radiation exposure, though little is known about recovery years after irradiation, especially at higher doses. We examined the testes from 143 irradiated and control male rhesus monkeys, who were part of the Radiation Late Effects Cohort over a four-year period. Irradiated animals were exposed to doses ranging from 3.5 to 8.5 Gy of total-body irradiation. The testes were assessed using computed tomography (CT) volumetry, serum testosterone, and histology for deceased members of the cohort. Irradiated animals exhibited dose-dependent testicular atrophy as well as decreased serum testosterone during the winter breeding season when compared to age-matched unirradiated controls. No significant difference in summer testosterone levels was observed. Volumetric and histologic evidence of testicular recovery was present approximately three years postirradiation for animals who received ≤8 Gy. The study demonstrates dose-dependent testicular injury after total-body irradiation and provides evidence for volumetric and spermatogonial recovery even at lethal doses of total-body irradiation in rhesus monkeys.


Asunto(s)
Espermatogonias , Testículo , Humanos , Animales , Masculino , Macaca mulatta , Testículo/efectos de la radiación , Espermatogonias/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Testosterona
5.
Int J Radiat Oncol Biol Phys ; 113(3): 661-674, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361520

RESUMEN

PURPOSE: Cancer is a severe delayed effect of acute radiation exposure. Total-body irradiation has been associated with an increased risk of solid cancer and leukemia in Japanese atomic bomb survivors, and secondary malignancies, such as sarcoma, are a serious consequence of cancer radiation therapy. The radiation late effects cohort (RLEC) of rhesus macaques (Macaca mulatta) is a unique resource of more than 200 animals for studying the long-term consequences of total-body irradiation in an animal model that closely resembles humans at the genetic and physiologic levels. METHODS AND MATERIALS: Using clinical records, clinical imaging, histopathology, and immunohistochemistry, this retrospective study characterized the incidence of neoplasia in the RLEC. RESULTS: Since 2007, 61 neoplasms in 44 of 239 irradiated animals were documented (18.4% of the irradiated population). Only 1 neoplasm was diagnosed among the 51 nonirradiated controls of the RLEC (2.0%). The most common malignancies in the RLEC were sarcomas (38.3% of diagnoses), which are rare neoplasms in nonirradiated macaques. The most common sarcomas included malignant nerve sheath tumors and malignant glomus tumors. Carcinomas were less common (19.7% of diagnoses), and consisted primarily of renal cell and hepatocellular carcinomas. Neoplasia occurred in most major body systems, with the skin and subcutis being the most common site (40%). RNA analysis showed similarities in transcriptional profiles between RLEC and human malignant nerve sheath tumors. CONCLUSIONS: This study indicates that total-body irradiation is associated with an increased incidence of neoplasia years following irradiation, at more than double the incidence described in aging, nonirradiated animals, and promotes tumor histotypes that are rarely observed in nonirradiated, aging rhesus macaques.


Asunto(s)
Neoplasias de la Vaina del Nervio , Traumatismos por Radiación , Sarcoma , Animales , Humanos , Incidencia , Macaca mulatta , Estudios Retrospectivos , Sarcoma/epidemiología , Sarcoma/etiología , Sarcoma/veterinaria
6.
PLoS One ; 15(2): e0228626, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053617

RESUMEN

OBJECTIVES: Reliable biomarkers for renal fibrosis are needed for clinical care and for research. Existing non-invasive biomarkers are imprecise, which has limited their utility. METHODS: We developed a method to quantify fibrosis by subject size-adjusted CT Hounsfield units. This was accomplished using CT measurements of renal cortex in previously irradiated non-human primates. RESULTS: Renal cortex mean CT Hounsfield units that were adjusted for body size had a very good direct correlation with renal parenchymal fibrosis, with an area under the curve of 0.93. CONCLUSIONS: This metric is a promising and simple non-invasive biomarker for renal fibrosis.


Asunto(s)
Diagnóstico por Computador , Riñón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Animales , Área Bajo la Curva , Biomarcadores , Tamaño Corporal , Calibración , Femenino , Fibrosis/diagnóstico por imagen , Riñón/patología , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Modelos Animales , Fantasmas de Imagen , Curva ROC , Sensibilidad y Especificidad
7.
Radiat Res ; 186(1): 55-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27333082

RESUMEN

Heart disease is an increasingly recognized, serious late effect of radiation exposure, most notably among breast cancer and Hodgkin's disease survivors, as well as the Hiroshima and Nagasaki atomic bomb survivors. The purpose of this study was to evaluate the late effects of total-body irradiation (TBI) on cardiac morphology, function and selected circulating biomarkers in a well-established nonhuman primate model. For this study we used male rhesus macaques that were exposed to a single total-body dose of ionizing gamma radiation (6.5-8.4 Gy) 5.6-9.7 years earlier at ages ranging from ∼3-10 years old and a cohort of nonirradiated controls. Transthoracic echocardiography was performed annually for 3 years on 20 irradiated and 11 control animals. Myocardium was examined grossly and histologically, and myocardial fibrosis/collagen was assessed microscopically and by morphometric analysis of Masson's trichrome-stained sections. Serum/plasma from 27 irradiated and 13 control animals was evaluated for circulating biomarkers of cardiac damage [N-terminal pro B-type natriuretic protein (nt-proBNP) and troponin-I], inflammation (CRP, IL-6, MCP-1, sICAM) and microbial translocation [LPS-binding protein (LBP) and sCD14]. A higher prevalence of histological myocardial fibrosis was observed in the hearts obtained from the irradiated animals (9/14) relative to controls (0/3) (P = 0.04, χ(2)). Echocardiographically determined left ventricular end diastolic and systolic diameters were significantly smaller in irradiated animals (repeated measures ANOVA, P < 0.001 and P < 0.008, respectively). Histomorphometric analysis of trichrome-stained sections of heart tissue demonstrated ∼14.9 ± 1.4% (mean ± SEM) of myocardial area staining for collagen in irradiated animals compared to 9.1 ± 0.9 % in control animals. Circulating levels of MCP-1 and LBP were significantly higher in irradiated animals (P < 0.05). A high incidence of diabetes in the irradiated animals was associated with higher plasma triglyceride and lower HDLc but did not appear to be associated with cardiovascular phenotypes. These results demonstrate that single total-body doses of 6.5-8.4 Gy produced long-term effects including a high incidence of myocardial fibrosis, reduced left ventricular diameter and elevated systemic inflammation. Additional prospective studies are required to define the time course and mechanisms underlying radiation-induced heart disease in this model.


Asunto(s)
Rayos gamma/efectos adversos , Corazón/fisiología , Corazón/efectos de la radiación , Miocardio/citología , Irradiación Corporal Total/efectos adversos , Animales , Biomarcadores/sangre , Peso Corporal/efectos de la radiación , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Electrocardiografía , Corazón/fisiopatología , Lípidos/sangre , Macaca mulatta , Masculino , Miocardio/metabolismo , Miocardio/patología , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA