RESUMEN
BACKGROUND: Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS: Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1ß, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS: Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1ß, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS: Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Asunto(s)
Bicarbonatos , Citocinas , Porcinos , Animales , Factor de Necrosis Tumoral alfa , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Interleucina-6 , EpitelioRESUMEN
Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Mutación , Oligonucleótidos Antisentido/administración & dosificación , Retinitis Pigmentosa/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Exones , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Modelos Moleculares , Oligonucleótidos Antisentido/farmacología , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Fuchs endothelial corneal dystrophy (FECD) is a common disease for which corneal transplantation is the only treatment option in advanced stages, and alternative treatment strategies are urgently required. Expansion (≥50 copies) of a non-coding trinucleotide repeat in TCF4 confers >76-fold risk for FECD in our large cohort of affected individuals. An FECD subject-derived corneal endothelial cell (CEC) model was developed to probe disease mechanism and investigate therapeutic approaches. The CEC model demonstrated that the repeat expansion leads to nuclear RNA foci, with the sequestration of splicing factor proteins (MBNL1 and MBNL2) to the foci and altered mRNA processing. Antisense oligonucleotide (ASO) treatment led to a significant reduction in the incidence of nuclear foci, MBNL1 recruitment to the foci, and downstream aberrant splicing events, suggesting functional rescue. This proof-of-concept study highlights the potential of a targeted ASO therapy to treat the accessible and tractable corneal tissue affected by this repeat expansion-mediated disease.
Asunto(s)
Distrofia Endotelial de Fuchs/genética , Predisposición Genética a la Enfermedad , Oligonucleótidos Antisentido/farmacología , Factor de Transcripción 4/genética , Expansión de Repetición de Trinucleótido/genética , Anciano , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Estudios de Cohortes , Células Endoteliales/metabolismo , Endotelio Corneal/patología , Femenino , Distrofia Endotelial de Fuchs/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Especificidad de Órganos , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Factores de RiesgoRESUMEN
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CFTR anion channel. Loss of CFTR function in pancreatic, biliary and intestinal epithelia, severely affects gastrointestinal function. Transcriptome analysis indicated the activation of an innate and adaptive immune response in the distal small intestine of Cftr null mice. Inflammation was associated with differential regulation of numerous genes involved in the transport and metabolism of nutrients and, particularly, lipids, that are targeted by ligand-dependent nuclear receptors and/or HNF4α. Among the most strongly down-regulated genes are the FXR targets Fgf15 and Nr0b2, the PPARα target Pdk4, and the PXR target Ces2a, whereas expression of the CF modifier gene Slc6a14 was strongly increased. Most changes in gene expression were reversed by bacterial containment. Our data suggest that the gut microbiota has a pervasive effect on gene expression in CF mice, affecting enterocyte maturation, lipid metabolism, and nutrient absorption in CF.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Intestino Delgado/metabolismo , Transcriptoma , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Regulación hacia Abajo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Microbioma Gastrointestinal , Eliminación de Gen , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Inmunidad Innata , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Masculino , Ratones , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismoRESUMEN
Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 µM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.
RESUMEN
The BubR1 checkpoint protein performs multiple functions in mitosis. We have carried out a functional analysis of conserved motifs of human BubR1 (also known as BUB1B) and demonstrate that spindle assembly checkpoint (SAC) and chromosome attachment functions can be uncoupled from each other. Mutation of five proline-directed serine phosphorylation sites, identified in vivo by mass spectrometry, essentially abolishes attachment of chromosomes to the spindle but has no effect on SAC functionality. By contrast, mutation of the two conserved KEN boxes required for SAC function does not impact chromosome congression. Interestingly, the contribution of the two KEN-box motifs is not equal. Cdc20 associates with the N-terminal but not C-terminal KEN box, and mutation of the N-terminal KEN motif results in more severe acceleration of mitotic timing. Moreover, the two KEN motifs are not sufficient for maximal binding of Cdc20 and APC/C, which also requires sequences in the BubR1 C-terminus. Finally, mutation of the GLEBS motif causes loss of Bub3 interaction and mislocalization of BubR1 from the kinetochore; concomitantly, BubR1 phosphorylation as well as SAC activity and chromosome congression are impaired, indicating that the GLEBS motif is strictly required for both major functions of human BubR1.
Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Inhibidores de Cisteína Proteinasa/farmacología , Genes cdc/efectos de los fármacos , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Leupeptinas/farmacología , Mitosis/efectos de los fármacos , Mitosis/genética , Mutación/genética , Nocodazol/farmacología , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Moduladores de Tubulina/farmacologíaRESUMEN
Reversible protein phosphorylation is a key regulatory mechanism of mitotic progression. Importantly, protein kinases themselves are also regulated by phosphorylation-dephosphorylation processes; hence, phosphorylation dynamics of kinases hold a wealth of information about phosphorylation networks. Here, we investigated the site-specific phosphorylation dynamics of human kinases during mitosis using synchronization of HeLa suspension cells, kinase enrichment, and high resolution mass spectrometry. In biological triplicate analyses, we identified 206 protein kinases and more than 900 protein kinase phosphorylation sites, including 61 phosphorylation sites on activation segments, and quantified their relative abundances across three specific mitotic stages. Around 25% of the kinase phosphorylation site ratios were found to be changed by at least 50% during mitotic progression. Further network analysis of jointly regulated kinase groups suggested that Cyclin-dependent kinase- and mitogen-activated kinase-centered interaction networks are coordinately down- and up-regulated in late mitosis, respectively. Importantly, our data cover most of the already known mitotic kinases and, moreover, identify attractive candidates for future studies of phosphorylation-based mitotic signaling. Thus, the results of this study provide a valuable resource for cell biologists and provide insight into the system properties of the mitotic phosphokinome.
Asunto(s)
Mitosis , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , Transducción de SeñalRESUMEN
MS has become a method-of-choice for proteome analysis, generating large data sets, which reflect proteome-scale protein-protein interaction and PTM networks. However, while a rapid growth in large-scale proteomics data can be observed, the sound biological interpretation of these results clearly lags behind. Therefore, combined efforts of bioinformaticians and biologists have been made to develop strategies and applications to help experimentalists perform this crucial task. This review presents an overview of currently available analytical strategies and tools to extract biologically relevant information from large protein lists. Moreover, we also present current research publications making use of these tools as examples of how the presented strategies may be incorporated into proteomic workflows. Emphasis is placed on the analysis of Gene Ontology terms, interaction networks, biological pathways and PTMs. In addition, topics including domain analysis and text mining are reviewed in the context of computational analysis of proteomic results. We expect that these types of analyses will significantly contribute to a deeper understanding of the role of individual proteins, protein networks and pathways in complex systems.
Asunto(s)
Minería de Datos/métodos , Proteómica/métodos , Biología Computacional/métodos , Bases de Datos Genéticas , Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteoma/análisis , Espectrometría de Masas en Tándem , Vocabulario ControladoRESUMEN
Leber congenital amaurosis type 10 (LCA10) is a severe inherited retinal dystrophy associated with mutations in CEP290. The deep intronic c.2991+1655A>G mutation in CEP290 is the most common mutation in LCA10 individuals and represents an ideal target for oligonucleotide therapeutics. Here, a panel of antisense oligonucleotides was designed to correct the splicing defect associated with the mutation and screened for efficacy and safety. This identified QR-110 as the best-performing molecule. QR-110 restored wild-type CEP290 mRNA and protein expression levels in CEP290 c.2991+1655A>G homozygous and compound heterozygous LCA10 primary fibroblasts. Furthermore, in homozygous three-dimensional iPSC-derived retinal organoids, QR-110 showed a dose-dependent restoration of mRNA and protein function, as measured by percentage and length of photoreceptor cilia, without off-target effects. Localization studies in wild-type mice and rabbits showed that QR-110 readily reached all retinal layers, with an estimated half-life of 58 days. It was well tolerated following intravitreal injection in monkeys. In conclusion, the pharmacodynamic, pharmacokinetic, and safety properties make QR-110 a promising candidate for treating LCA10, and clinical development is currently ongoing.
RESUMEN
Understanding cell growth and cell division involves the study of regulatory events that occur in a cell cycle phase-dependent manner. Studies analyzing cell cycle regulatory mechanisms and cell cycle progression invariably require synchronization of cell populations at specific cell cycle stages. Several methods have been established to synchronize cells, including serum deprivation, contact inhibition, centrifugal elutriation, and drug-dependent synchronization. Despite potential adverse cellular consequences of synchronizing cells by pharmacological agents, drug-dependent methods can be advantageous when studying later cell cycle events to ensure specific enrichment at selected mitotic stages. This chapter describes protocols used in our laboratory for isolating mitotic mammalian cells in a large-scale manner. In particular, we discuss the technical aspects of adherent or suspension cell isolation, the methods necessary to enrich cells at different mitotic stages and the optimized culture conditions.
Asunto(s)
Ciclo Celular/fisiología , Mitosis/fisiología , Anafase/genética , Técnicas de Cultivo de Célula , Ciclo Celular/genética , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Metafase/genética , Mitosis/genética , Prometafase/genética , Telofase/genéticaRESUMEN
Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions.We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription.We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated. Disease progression is marked by an overall down-regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively unaffected. While these alterations seem to be independent of copy number alterations in the PDE4D locus and driven by AR and ERG binding, we also observed increased DNA methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the isoform composition in prostate cancer tissues.We propose two independent metrics that may serve as diagnostic and prognostic markers for prostate disease: (PDE4D7 - PDE4D5) provides an effective means for distinguishing PCa from normal adjacent prostate, whereas PDE4D1/2 - (PDE4D5 + PDE4D7 + PDE4D9) offers strong prognostic potential to detect aggressive forms of PCa and is associated with metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate cancer biomarker and potential drug target.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Metástasis de la Neoplasia/genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/genética , Metilación de ADN/genética , Regulación hacia Abajo , Estudios de Seguimiento , Dosificación de Gen , Humanos , Isoenzimas/genética , Estimación de Kaplan-Meier , Masculino , Pronóstico , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Receptores Androgénicos/genética , Regulador Transcripcional ERG/genética , Regulación hacia ArribaRESUMEN
During mitosis, Bub1 kinase phosphorylates histone H2A-T120 to promote centromere sister chromatid cohesion through recruitment of shugoshin (Sgo) proteins. The regulation and dynamics of H2A-T120 phosphorylation are poorly understood. Using quantitative phosphoproteomics we show that Bub1 is autophosphorylated at numerous sites. We confirm mitosis-specific autophosphorylation of a several residues and show that Bub1 activation is primed in interphase but fully achieved only in mitosis. Mutation of a single autophosphorylation site T589 alters kinetochore turnover of Bub1 and results in uniform H2A-T120 phosphorylation and Sgo recruitment along chromosome arms. Consequently, improper sister chromatid resolution and chromosome segregation errors are observed. Kinetochore tethering of Bub1-T589A refocuses H2A-T120 phosphorylation and Sgo1 to centromeres. Recruitment of the Bub1-Bub3-BubR1 axis to kinetochores has recently been extensively studied. Our data provide novel insight into the regulation and kinetochore residency of Bub1 and indicate that its localization is dynamic and tightly controlled through feedback autophosphorylation.
Asunto(s)
Retroalimentación Fisiológica , Histonas/metabolismo , Cinetocoros/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Centrómero/metabolismo , Cromatografía Liquida , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Interfase , Espectrometría de Masas , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Espectrometría de Masas en TándemRESUMEN
Understanding cell growth and cell division involves the study of regulatory events that occur in a cell cycle phase-dependent manner. Studies analyzing cell cycle regulatory mechanisms and cell cycle progression invariably require synchronization of cell populations at specific cell cycle stages. Several methods have been established to synchronize cells, including serum deprivation, contact inhibition, centrifugal elutriation, and drug-dependent synchronization. Despite potential adverse cellular consequences of synchronizing cells by pharmacological agents, drug-dependent methods can be advantageous when studying later cell cycle events to ensure specific enrichment at selected mitotic stages. This chapter describes protocols used in our laboratory for isolating mitotic mammalian cells in a large-scale manner. In particular, we discuss the technical aspects of adherent or suspension cell isolation, the methods necessary to enrich cells at different mitotic stages and the optimized culture conditions.