Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045787

RESUMEN

Domestic dogs (Canis lupus familiaris) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, Sedoreoviridae, Parvoviridae and Anelloviridae. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family Anelloviridae, genus Thetatorquevirus, and by one novel virus in the family Sedoreoviridae, genus Orbivirus. The genus Orbivirus contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical importance to humans and other animals.


Asunto(s)
Animales Salvajes , Enfermedades de los Perros , Animales , Perros , Uganda/epidemiología , Enfermedades de los Perros/virología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/transmisión , Prevalencia , Animales Salvajes/virología , Viroma , Virus/clasificación , Virus/aislamiento & purificación , Virus/genética , Metagenómica , Anelloviridae/genética , Anelloviridae/aislamiento & purificación , Anelloviridae/clasificación , Humanos , Virosis/epidemiología , Virosis/veterinaria , Virosis/transmisión , Virosis/virología
2.
Am J Primatol ; 85(1): e23452, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36329642

RESUMEN

Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.


Asunto(s)
Pan troglodytes , Virosis , Animales , África/epidemiología , Pan troglodytes/virología , Virosis/epidemiología , Virosis/veterinaria , Virosis/virología , Animales de Zoológico/virología
3.
PLoS Pathog ; 9(10): e1003703, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204261

RESUMEN

The innate immune response to viruses is initiated when specialized cellular sensors recognize viral danger signals. Here we show that truncated forms of viral genomes that accumulate in infected cells potently trigger the sustained activation of the transcription factors IRF3 and NF-κB and the production type I IFNs through a mechanism independent of IFN signaling. We demonstrate that these defective viral genomes (DVGs) are generated naturally during respiratory infections in vivo even in mice lacking the type I IFN receptor, and their appearance coincides with the production of cytokines during infections with Sendai virus (SeV) or influenza virus. Remarkably, the hallmark antiviral cytokine IFNß is only expressed in lung epithelial cells containing DVGs, while cells within the lung that contain standard viral genomes alone do not express this cytokine. Together, our data indicate that DVGs generated during viral replication are a primary source of danger signals for the initiation of the host immune response to infection.


Asunto(s)
Genoma Viral/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Respirovirus/inmunología , Virus Sendai/inmunología , Transducción de Señal/inmunología , Animales , Cricetinae , Perros , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferón beta/genética , Interferón beta/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Infecciones por Respirovirus/genética , Infecciones por Respirovirus/patología , Transducción de Señal/genética
4.
PLoS One ; 18(6): e0288007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384730

RESUMEN

Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.


Asunto(s)
Pan troglodytes , Saliva , Animales , Humanos , Congo , Uganda , Zoonosis/epidemiología , Retroviridae
5.
Conserv Physiol ; 11(1): coad054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39070777

RESUMEN

Climate change affects the behavior, physiology and life history of many Arctic wildlife species. It can also influence the distribution and ecology of infectious agents. The southern Beaufort Sea (SB) subpopulation of polar bears (Ursus maritimus) has experienced dramatic behavioral changes due to retreating sea ice and other climate-related factors, but the effects of these changes on physiology and infection remain poorly understood. Using serum from polar bears sampled between 2004 and 2015 and metagenomic DNA sequencing, we identified 48 viruses, all of the family Anelloviridae. Anelloviruses are small, ubiquitous infectious agents with circular single-stranded DNA genomes that are not known to cause disease but, in humans, covary in diversity and load with immunological compromise. We therefore examined the usefulness of anelloviruses as biomarkers of polar bear physiological stress related to climate and habitat use. Polar bear anelloviruses sorted into two distinct clades on a phylogenetic tree, both of which also contained anelloviruses of giant pandas (Ailuropoda melanoleuca), another ursid. Neither anellovirus diversity nor load were associated with any demographic variables, behavioral factors or direct physiological measures. However, pairwise genetic distances between anelloviruses were positively correlated with pairwise differences in sampling date, suggesting that the polar bear "anellome" is evolving over time. These findings suggest that anelloviruses are not a sensitive indicator of polar physiological stress, but they do provide a baseline for evaluating future changes to polar bear viromes.

6.
Ecohealth ; 15(1): 148-162, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29362964

RESUMEN

All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.


Asunto(s)
Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/transmisión , Conservación de los Recursos Naturales , Hominidae/microbiología , Zoonosis/transmisión , Animales , Humanos , Salud Pública
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA