Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.262
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891875

RESUMEN

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología
2.
Nat Immunol ; 23(3): 411-422, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35165446

RESUMEN

The increasing implication of lymphocytes in general physiology and immune surveillance outside of infection poses the question of how their antigen receptors might be involved. Here, we show that macromolecular aggregates of intraepidermal γδ T cell antigen receptors (TCRs) in the mouse skin aligned with and depended on Skint1, a butyrophilin-like (BTNL) protein expressed by differentiated keratinocytes (KCs) at steady state. Interruption of TCR-mediated 'normality sensing' had no impact on γδ T cell numbers but altered their signature phenotype, while the epidermal barrier function was compromised. In addition to the regulation of steady-state physiology, normality sensing licensed intraepidermal T cells to respond rapidly to subsequent tissue perturbation by using innate tumor necrosis factor (TNF) superfamily receptors. Thus, interfering with Skint1-dependent interactions between local γδ T cells and KCs at steady state increased the susceptibility to ultraviolet B radiation (UVR)-induced DNA damage and inflammation, two cancer-disposing factors.


Asunto(s)
Linfocitos Intraepiteliales , Receptores de Antígenos de Linfocitos T gamma-delta , Animales , Butirofilinas , Epidermis , Linfocitos Intraepiteliales/metabolismo , Concesión de Licencias , Ratones , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
3.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35831952

RESUMEN

Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis.


Asunto(s)
Proteínas Wnt , Vía de Señalización Wnt , Animales , Embrión de Mamíferos/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética
4.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943978

RESUMEN

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Asunto(s)
Inmunidad Adaptativa , COVID-19 , Cadenas Pesadas de Inmunoglobulina , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Inmunidad Adaptativa/genética , Anciano , Linfocitos B/inmunología , COVID-19/genética , COVID-19/inmunología , Sitios Genéticos , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , SARS-CoV-2/inmunología , Seroconversión , Linfocitos T/inmunología
5.
Soft Matter ; 20(5): 1114-1119, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224143

RESUMEN

Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.

6.
Nature ; 559(7712): 73-76, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973733

RESUMEN

Einstein's theory of gravity-the general theory of relativity1-is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity2, the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies3,4 are limited by the weak self-gravity of the bodies, and tests using pulsar-white-dwarf binaries5,6 have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit with another white dwarf. This system permits a test that compares how the gravitational pull of the outer white dwarf affects the pulsar, which has strong self-gravity, and the inner white dwarf. Here we report that the accelerations of the pulsar and its nearby white-dwarf companion differ fractionally by no more than 2.6 × 10-6. For a rough comparison, our limit on the strong-field Nordtvedt parameter, which measures violation of the universality of free fall, is a factor of ten smaller than that obtained from (weak-field) Solar System tests3,4 and a factor of almost a thousand smaller than that obtained from other strong-field tests5,6.

7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875601

RESUMEN

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.


Asunto(s)
Movimiento Celular , Quimiocina CCL21/metabolismo , Células Dendríticas/fisiología , Ganglios Linfáticos/metabolismo , Receptores CCR/metabolismo , Animales , Ratones Endogámicos C57BL
8.
Br J Haematol ; 203(4): 614-624, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699574

RESUMEN

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Asunto(s)
Mieloma Múltiple , Peroxidasa , Microambiente Tumoral , Animales , Ratones , Médula Ósea/patología , Modelos Animales de Enfermedad , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células Mieloides/patología , Peroxidasa/metabolismo
9.
MMWR Morb Mortal Wkly Rep ; 72(43): 1162-1167, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883327

RESUMEN

Early detection of emerging SARS-CoV-2 variants is critical to guiding rapid risk assessments, providing clear and timely communication messages, and coordinating public health action. CDC identifies and monitors novel SARS-CoV-2 variants through diverse surveillance approaches, including genomic, wastewater, traveler-based, and digital public health surveillance (e.g., global data repositories, news, and social media). The SARS-CoV-2 variant BA.2.86 was first sequenced in Israel and reported on August 13, 2023. The first U.S. COVID-19 case caused by this variant was reported on August 17, 2023, after a patient received testing for SARS-CoV-2 at a health care facility on August 3. In the following month, eight additional U.S. states detected BA.2.86 across various surveillance systems, including specimens from health care settings, wastewater surveillance, and traveler-based genomic surveillance. As of October 23, 2023, sequences have been reported from at least 32 countries. Continued variant tracking and further evidence are needed to evaluate the full public health impact of BA.2.86. Timely genomic sequence submissions to global public databases aided early detection of BA.2.86 despite the decline in the number of specimens being sequenced during the past year. This report describes how multicomponent surveillance and genomic sequencing were used in real time to track the emergence and transmission of the BA.2.86 variant. This surveillance approach provides valuable information regarding implementing and sustaining comprehensive surveillance not only for novel SARS-CoV-2 variants but also for future pathogen threats.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
10.
MMWR Morb Mortal Wkly Rep ; 72(24): 651-656, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319011

RESUMEN

CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , Genómica
11.
Colorectal Dis ; 25(1): 16-23, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975477

RESUMEN

AIM: Locally advanced intestinal neoplasms including colon cancer may require radical en bloc pancreaticoduodenectomy and right hemicolectomy (PD-RC) to achieve curative, margin-negative resection, but the safety and benefit of this uncommon procedure has not been established. The Association of Coloproctology of Great Britain and Ireland IMPACT initiative has also highlighted a lack of awareness about current services available within the UK for patients with advanced colorectal cancer and concerns about low-volume centres managing complex cases. Thus, we aimed to review the feasibility, safety and long-term outcomes of this procedure at a single high-volume hepatopancreaticobiliary surgery unit in the UK. METHOD: A retrospective cohort study was performed using a database of all consecutive patients with intestinal cancer who had been referred to our regional advanced multidisciplinary team and undergone PD-RC in a 7-year period (2013-2020). Clinico-pathological and outcome data were reviewed. RESULTS: Ten patients (mean age 54 ± 13, 8/10 men) were identified. Final histology revealed the primary tumour sites were colon (n = 7) and duodenum (n = 3). R0 resection was achieved in all cases. The major complication rate (Clavien-Dindo ≥ 3) was 10% (1/10) with no deaths within 90 days of surgery. The Kaplan-Meier estimated 5-year overall survival was 83.3% (95% CI 58.3%-100%). Univariate survival analysis identified perineural invasion and extra-colonic origin as predictors of poor survival (log-rank P < 0.05). CONCLUSION: En bloc PD-RC for locally advanced intestinal cancer can be performed safely with a high proportion of margin-negative resections and resultant long-term survival in carefully selected patients.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Masculino , Humanos , Pancreaticoduodenectomía/métodos , Estudios Retrospectivos , Neoplasias del Colon/patología , Neoplasias Colorrectales/cirugía , Colectomía/métodos
12.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003407

RESUMEN

Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.


Asunto(s)
MicroARNs , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus Zika/fisiología , MicroARNs/metabolismo , Regulación hacia Abajo , Antivirales/farmacología , Replicación Viral
13.
N Engl J Med ; 381(26): 2569-2580, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31881145

RESUMEN

Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.


Asunto(s)
Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/epidemiología , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Gripe Humana/epidemiología , Salud Pública , Tuberculosis/epidemiología , Animales , Bacterias/genética , Enfermedades Transmitidas por los Alimentos/diagnóstico , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/parasitología , Humanos , Gripe Humana/diagnóstico , Gripe Humana/microbiología , Metagenómica , Parásitos/genética , Tuberculosis/diagnóstico , Virus/genética
14.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143464

RESUMEN

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiología
15.
Bioorg Med Chem Lett ; 71: 128841, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671848

RESUMEN

To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes. Positive controls were retigabine, flupirtine, and RL-81; i.e. Kv7.2 channel activators that significantly shift voltage-dependent activation to more negative potentials (ΔV50) at 5 µM. We identified 6 new compounds that exhibited differential enhancing activity between WT and W236L mutant channels. Whole cell patch-clamp electrophysiology studies were conducted to identify Kv7.2. Kv7.2/3, Kv7.4, and Kv7.5 selectivity. Our results validate the SyncroPatch platform and establish new structure activity relationships (SAR). Specifically, in addition to selective Kv7.2, Kv7.2/3, Kv7.4. and Kv7.5 agonists, we identified a novel chemotype, ZK-21, a 4-aminotetrahydroquinoline that is distinct from any of the previously described Kv7 channel modifiers. Using flexible receptor docking, ZK-21 was predicted to be stabilized by W236 and bind perpendicular to retigabine, burying the benzyl carbamate group into a tunnel reaching the core of the pore domain.


Asunto(s)
Canales de Potasio KCNQ , Canal de Potasio KCNQ2 , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo
17.
Plant Dis ; 106(2): 357-359, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34340566

RESUMEN

In this Short Communication we describe the occurrence of mummy berry associated with huckleberry (Vaccinium membranaceum) caused by Monilinia spp. in Oregon. To our knowledge, this is the first report of a Monilinia spp. associated with mummy berry of huckleberry in Oregon. Sequence data from our specimens reveal the closest identity was Monilinia vaccinii-corymbosi, a pathogen of commercial blueberry (Vaccinium corymbosum). This may be a new species of Monilinia, not previously reported on huckleberry, and further investigation is needed. Of specific importance, the huckleberry holds cultural importance as a sacred First Food of the Confederated Tribes of the Umatilla Indian Reservation and other Pacific Northwest tribes. Although plant pathogen management in natural landscapes presents unique challenges, we will work with tribal authorities to determine whether cultural management techniques may mitigate yield loss due to Monilinia spp.


Asunto(s)
Huckleberry (Planta) , Vaccinium , Frutas , Oregon
18.
Neuropsychol Rehabil ; 32(10): 2496-2518, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34278952

RESUMEN

Depression and anxiety are common sequelae of stroke, occurring in at least one-third of patients. This study evaluated the acceptability and feasibility of providing mindfulness training (MT) to stroke survivors with the aim of reducing depression and anxiety. Following a six-week one-on-one MT course, 17 participants were interviewed. The median age of participants was 71, and 10 participants were male. This paper focuses on participants' expectations of the MT and their views about its impact on their everyday lives. Conventional content analysis was used for coding and analysis. A single theme, Seizing rehabilitation opportunities, was captured in relation to expectations of MT, and four themes provided information relating to participants' perceived impact of the course: Calming the mind, Reduced reactivity, Remedying physical symptoms, and Not quite there yet.Most participants knew little about mindfulness before the MT and did not have specific goals in mind when volunteering to take part. The findings suggest that most participants considered MT beneficial through reducing stress and giving them additional skills to cope with their everyday lives. A tailored mindfulness intervention may be a useful adjunct to other rehabilitation therapies for stroke survivors.


Asunto(s)
Atención Plena , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Motivación , Accidente Cerebrovascular/complicaciones , Investigación Cualitativa , Sobrevivientes
19.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142738

RESUMEN

ß-Thalassemia is one of the most common genetically inherited disorders worldwide, and it is characterized by defective ß-globin chain synthesis leading to reduced or absent ß-globin chains. The excess α-globin chains are the key factor leading to the death of differentiating erythroblasts in a process termed ineffective erythropoiesis, leading to anemia and associated complications in patients. The mechanism of ineffective erythropoiesis in ß-thalassemia is complex and not fully understood. Autophagy is primarily known as a cell recycling mechanism in which old or dysfunctional proteins and organelles are digested to allow recycling of constituent elements. In late stage, erythropoiesis autophagy is involved in the removal of mitochondria as part of terminal differentiation. Several studies have shown that autophagy is increased in earlier erythropoiesis in ß-thalassemia erythroblasts, as compared to normal erythroblasts. This review summarizes what is known about the role of autophagy in ß-thalassemia erythropoiesis and shows that modulation of autophagy and its interplay with apoptosis may provide a new therapeutic route in the treatment of ß-thalassemia. Literature was searched and relevant articles were collected from databases, including PubMed, Scopus, Prospero, Clinicaltrials.gov, Google Scholar, and the Google search engine. Search terms included: ß-thalassemia, ineffective erythropoiesis, autophagy, novel treatment, and drugs during the initial search. Relevant titles and abstracts were screened to choose relevant articles. Further, selected full-text articles were retrieved, and then, relevant cross-references were scanned to collect further information for the present review.


Asunto(s)
Talasemia beta , Autofagia , Eritropoyesis , Humanos , Mitofagia , Globinas alfa , Globinas beta , Talasemia beta/metabolismo
20.
Lancet Oncol ; 22(6): 765-778, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930323

RESUMEN

BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer-BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 µg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 µg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81-98) of 34 healthy controls; 21 (38%; 26-51) of 56 patients with solid cancer, and eight (18%; 10-32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75-99) of 19 patients with solid cancer, 12 (100%; 76-100) of 12 healthy controls, and three (60%; 23-88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17-47) of 33, 18 (86%; 65-95) of 21, and four (11%; 4-25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , COVID-19/inmunología , Neoplasias/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Vacuna BNT162 , COVID-19/sangre , COVID-19/complicaciones , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunogenicidad Vacunal/inmunología , Londres/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/complicaciones , Neoplasias/virología , Estudios Prospectivos , SARS-CoV-2 , Gales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA