Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003497

RESUMEN

Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/metabolismo , Cromatografía Liquida , ARN Ribosómico 16S/metabolismo , Espectrometría de Masas en Tándem , Fibras de la Dieta/metabolismo , Fitoquímicos/metabolismo
2.
Environ Microbiol ; 23(3): 1527-1540, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33331146

RESUMEN

Type IV pili (T4P) are bacterial surface-exposed appendages that have been extensively studied in Gram-negative pathogenic bacteria. Despite recent sequencing efforts, little is known regarding these structures in non-pathogenic anaerobic Gram-positive species, particularly commensals of the mammalian gut. Early studies revealed that T4P in two ruminal Gram-positive species are associated with growth on cellulose, suggesting possible associations of T4P with substrate utilization patterns. In the present study, genome sequences of 118 taxonomically diverse, mainly Gram-positive, bacterial strains isolated from anaerobic (gastrointestinal) environments, have been analysed. The genes likely to be associated with T4P biogenesis were analysed and grouped according to T4P genetic organization. In parallel, consortia of Carbohydrate Active enZYmes (CAZymes) were also analysed and used to predict carbohydrate utilization abilities of selected strains. The predictive power of this approach was additionally confirmed by experimental assessment of substrate-related growth patterns of selected strains. Our analysis revealed that T4P systems with diverse genetic organization are widespread among Gram-positive anaerobic non-pathogenic bacteria isolated from different environments, belonging to two phylogenetically distantly related phyla: Firmicutes and Actinobacteria.


Asunto(s)
Proteínas Fimbrias , Fimbrias Bacterianas , Bacterias , Carbohidratos , Fimbrias Bacterianas/genética , Bacterias Gramnegativas
3.
Artículo en Inglés | MEDLINE | ID: mdl-34398726

RESUMEN

A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002T, belonging to the family Ruminococcaceae, was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that Ruminococcus bromii was the phylogenetically closest related species to the novel strain IPLA60002T, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut R. bromii strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002T is phylogenetically distinct from other species within the genus Ruminococcus. Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002T strain isolated from human bile be given the name Ruminococcoides bili gen. nov., sp. nov., within the new proposed genus Ruminococcoides and the family Ruminococcaceae. Strain IPLA60002T (=DSM 110008T=LMG 31505T) is proposed as the type strain of Ruminococcoides bili.


Asunto(s)
Bilis/microbiología , Filogenia , Ruminococcus/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , ARN Ribosómico 16S/genética , Ruminococcus/aislamiento & purificación , Análisis de Secuencia de ADN
4.
BMC Microbiol ; 20(1): 283, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928123

RESUMEN

BACKGROUND: The human colon is colonised by a dense microbial community whose species composition and metabolism are linked to health and disease. The main energy sources for colonic bacteria are dietary polysaccharides and oligosaccharides. These play a major role in modulating gut microbial composition and metabolism, which in turn can impact on health outcomes. RESULTS: We investigated the influence of wheat bran arabinoxylan oligosaccharides (AXOS) and maltodextrin supplements in modulating the composition of the colonic microbiota and metabolites in healthy adults over the age of 60. Male and female volunteers, (n = 21, mean BMI 25.2 ± 0.7 kg/m2) participated in the double-blind, cross over supplement study. Faecal samples were collected for analysis of microbiota, short chain fatty acids levels and calprotectin. Blood samples were collected to measure glucose, cholesterol and triglycerides levels. There was no change in these markers nor in calprotectin levels in response to the supplements. Both supplements were well-tolerated by the volunteers. Microbiota analysis across the whole volunteer cohort revealed a significant increase in the proportional abundance of faecal Bifidobacterium species (P ≤ 0.01) in response to AXOS, but not maltodextrin, supplementation. There was considerable inter-individual variation in the other bacterial taxa that responded, with a clear stratification of volunteers as either Prevotella-plus (n = 8; > 0.1% proportional abundance) or Prevotella-minus (n = 13; ≤0.1% proportional abundance) subjects founded on baseline sample profiles. There was a significant increase in the proportional abundance of both faecal Bifidobacterium (P ≤ 0.01) and Prevotella species (P ≤ 0.01) in Prevotella-plus volunteers during AXOS supplementation, while Prevotella and Bacteroides relative abundances showed an inverse relationship. Proportional abundance of 26 OTUs, including bifidobacteria and Anaerostipes hadrus, differed significantly between baseline samples of Prevotella-plus compared to Prevotella-minus individuals. CONCLUSIONS: The wheat bran AXOS supplementation was bifidogenic and resulted in changes in human gut microbiota composition that depended on the initial microbiota profile, specifically the presence or absence of Prevotella spp. as a major component of the microbiota. Our data therefore suggest that initial profiling of individuals through gut microbiota analysis should be considered important when contemplating nutritional interventions that rely on prebiotics. TRIAL REGISTRATION: Clinical trial registration number: NCT02693782 . Registered 29 February 2016 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02693782?term=NCT02693782&rank=1.


Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal/fisiología , Oligosacáridos/farmacología , Prevotella/fisiología , Anciano , Suplementos Dietéticos , Método Doble Ciego , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Complejo de Antígeno L1 de Leucocito/análisis , Lípidos/sangre , Masculino , Persona de Mediana Edad , Oligosacáridos/química , Polisacáridos/farmacología , Prebióticos , Prevotella/efectos de los fármacos , Xilanos
5.
J Nutr ; 150(7): 1859-1870, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32510158

RESUMEN

BACKGROUND: The composition of diets consumed following weight loss (WL) can have a significant impact on satiety and metabolic health. OBJECTIVE: This study was designed to test the effects of including a nondigestible carbohydrate to achieve weight maintenance (WM) following a period of WL. METHODS: Nineteen volunteers [11 females and 8 males, aged 20-62 y; BMI (kg/m2): 27-42] consumed a 3-d maintenance diet (15%:30%:55%), followed by a 21-d WL diet (WL; 30%:30%:40%), followed by 2 randomized 10-d WM diets (20%:30%:50% of energy from protein:fat:carbohydrate) containing either resistant starch type 3 (RS-WM; 22 or 26 g/d for females and males, respectively) or no RS (C-WM) in a within-subject crossover design without washout periods. The primary outcome, WM after WL, was analyzed by body weight. Secondary outcomes of fecal microbiota composition and microbial metabolite concentrations and gut hormones were analyzed in fecal samples and blood plasma, respectively. All outcomes were assessed at the end of each dietary period. RESULTS: Body weight was similar after the RS-WM and C-WM diets (90.7 and 90.8 kg, respectively), with no difference in subjectively rated appetite. During the WL diet period plasma ghrelin increased by 36% (P < 0.001), glucose-dependent insulinotropic polypeptide (GIP) decreased by 33% (P < 0.001), and insulin decreased by 46% (P < 0.001), but no significant differences were observed during the RS-WM and C-WM diet periods. Fasting blood glucose was lower after the RS-WM diet (5.59 ± 0.31 mmol/L) than after the C-WM diet [5.75 ± 0.49 mmol/L; P = 0.015; standard error of the difference between the means (SED): 0.09]. Dietary treatments influenced the fecal microbiota composition (R2 = 0.054, P = 0.031) but not diversity. CONCLUSIONS: The metabolic benefits, for overweight adults, from WL were maintained through a subsequent WM diet with higher total carbohydrate intake. Inclusion of resistant starch in the WM diet altered gut microbiota composition positively and resulted in lower fasting glucose compared with the control, with no apparent change in appetite. This trial was registered at clinicaltrials.gov as NCT01724411.


Asunto(s)
Fibras de la Dieta/farmacología , Microbioma Gastrointestinal , Sobrepeso/dietoterapia , Pérdida de Peso , Adulto , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Dieta Reductora , Fibras de la Dieta/administración & dosificación , Heces/microbiología , Femenino , Intolerancia a la Glucosa , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Adulto Joven
6.
Food Microbiol ; 90: 103462, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32336380

RESUMEN

Obligate anaerobic bacteria from the genus Pectinatus have been known to cause beer spoilage for over 40 years. Whole genome sequencing was performed on eleven beer spoilage strains (nine Pectinatus frisingensis, one Pectinatus cerevisiiphilus and one Pectinatus haikarae isolate), as well as two pickle spoilage species (Pectinatus brassicae MB591 and Pectinatus sottacetonis MB620) and the tolerance of all species to a range of environmental conditions was tested. Exploration of metabolic pathways for carbohydrates, amino acids and vitamins showed little difference between beer spoilage- and pickle spoilage-associated strains. However, genes for certain carbohydrate- and sulphur-containing amino acid-associated enzymes were only present in the beer spoilage group and genes for specific transporters and regulatory genes were uniquely found in the pickle spoilage group. Transporters for compatible solutes, only present in pickle-associated strains, likely explain their experimentally observed higher halotolerance compared to the beer spoilers. Genes involved in biofilm formation and ATP Binding Cassette (ABC) transporters potentially capable of exporting hop-derived antimicrobial compounds were found in all strains. All species grew in the presence of alcohol up to 5% alcohol by volume (ABV) and hops extract up to 80 ppm of iso-α-acids. Therefore, the species isolated from pickle processes may pose novel hazards in brewing.


Asunto(s)
Cerveza/microbiología , Alimentos Fermentados/microbiología , Microbiología de Alimentos , Pectinatus/genética , Pectinatus/fisiología , Tolerancia a la Sal , Transportadoras de Casetes de Unión a ATP/genética , Ácidos/metabolismo , Biopelículas/crecimiento & desarrollo , Medios de Cultivo , Redes y Vías Metabólicas , Secuenciación Completa del Genoma
7.
Environ Microbiol ; 21(1): 259-271, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30362296

RESUMEN

Interspecies cross-feeding is a fundamental factor in anaerobic microbial communities. In the human colon, formate is produced by many bacterial species but is normally detected only at low concentrations. Ruminococcus bromii produces formate, ethanol and acetate in approximately equal molar proportions in pure culture on RUM-RS medium with 0.2% Novelose resistant starch (RS3) as energy source. Batch co-culturing on starch with the acetogen Blautia hydrogenotrophica however led to the disappearance of formate and increased levels of acetate, which is proposed to occur through the routing of formate via the Wood Ljungdahl pathway of B. hydrogenotrophica. We investigated these inter-species interactions further using RNAseq to examine gene expression in continuous co-cultures of R. bromii and B. hydrogenotrophica. Transcriptome analysis revealed upregulation of B. hydrogenotrophica genes involved in the Wood-Ljungdahl pathway and of a 10 gene cluster responsible for increased branched chain amino acid fermentation in the co-cultures. Cross-feeding between formate-producing species and acetogens may be a significant factor in short chain fatty acid formation in the colon contributing to high rates of acetate production. Transcriptome analysis also indicated competition for the vitamin thiamine and downregulation of dissimilatory sulfate reduction and key redox proteins in R. bromii in the co-cultures, thus demonstrating the wide-ranging consequences of inter-species interactions in this model system.


Asunto(s)
Bacterias/metabolismo , Colon/microbiología , Formiatos/metabolismo , Interacciones Microbianas/fisiología , Transcriptoma , Acetatos/metabolismo , Técnicas de Cocultivo , Etanol/metabolismo , Fermentación , Humanos , Ruminococcus/metabolismo , Almidón/metabolismo
8.
Gastroenterology ; 153(5): 1320-1337.e16, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28782508

RESUMEN

BACKGROUND & AIMS: Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4+ T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. METHODS: We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4+ T cells. We sequenced T-cell receptor Vß genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4+ T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. RESULTS: Circulating and gut-resident CD4+ T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4+ T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vß repertoire. These cells were functionally heterogeneous, produced barrier-protective cytokines, and stimulated intestinal stromal and epithelial cells via interleukin 17A, interferon gamma, and tumor necrosis factor. In patients with inflammatory bowel diseases, microbiota-reactive CD4+ T cells were reduced in the blood compared with intestine; T-cell responses that we detected had an increased frequency of interleukin 17A production compared with responses of T cells from blood or intestinal tissues of controls. CONCLUSIONS: In an analysis of peripheral blood mononuclear cells and intestinal tissues from patients with inflammatory bowel diseases vs controls, we found that reactivity to intestinal bacteria is a normal property of the human CD4+ T-cell repertoire, and does not necessarily indicate disrupted interactions between immune cells and the commensal microbiota. T-cell responses to commensals might support intestinal homeostasis, by producing barrier-protective cytokines and providing a large pool of T cells that react to pathogens.


Asunto(s)
Bacterias/inmunología , Linfocitos T CD4-Positivos/inmunología , Colitis Ulcerosa/inmunología , Enfermedad de Crohn/inmunología , Microbioma Gastrointestinal/inmunología , Intestinos/inmunología , Bacterias/clasificación , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/microbiología , Estudios de Casos y Controles , Línea Celular , Colitis Ulcerosa/sangre , Colitis Ulcerosa/diagnóstico , Enfermedad de Crohn/sangre , Enfermedad de Crohn/diagnóstico , Interacciones Huésped-Patógeno , Humanos , Inmunidad Mucosa , Memoria Inmunológica , Interleucina-17/inmunología , Intestinos/microbiología , Fenotipo , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Células Th17/inmunología , Células Th17/microbiología
9.
Environ Microbiol ; 20(1): 324-336, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29159997

RESUMEN

Ruminococcus bromii is a dominant member of the human colonic microbiota that plays a 'keystone' role in degrading dietary resistant starch. Recent evidence from one strain has uncovered a unique cell surface 'amylosome' complex that organizes starch-degrading enzymes. New genome analysis presented here reveals further features of this complex and shows remarkable conservation of amylosome components between human colonic strains from three different continents and a R. bromii strain from the rumen of Australian cattle. These R. bromii strains encode a narrow spectrum of carbohydrate active enzymes (CAZymes) that reflect extreme specialization in starch utilization. Starch hydrolysis products are taken up mainly as oligosaccharides, with only one strain able to grow on glucose. The human strains, but not the rumen strain, also possess transporters that allow growth on galactose and fructose. R. bromii strains possess a full complement of sporulation and spore germination genes and we demonstrate the ability to form spores that survive exposure to air. Spore formation is likely to be a critical factor in the ecology of this nutritionally highly specialized bacterium, which was previously regarded as 'non-sporing', helping to explain its widespread occurrence in the gut microbiota through the ability to transmit between hosts.


Asunto(s)
Colon/microbiología , Rumen/microbiología , Ruminococcus/metabolismo , Esporas Bacterianas , Animales , Metabolismo de los Hidratos de Carbono , Bovinos , Niño , Humanos , Masculino , Microbiota , Complejos Multiproteicos , Ruminococcus/aislamiento & purificación , Ruminococcus/ultraestructura , Almidón/metabolismo
10.
Microbiology (Reading) ; 163(9): 1292-1305, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28857034

RESUMEN

A novel lanC-like sequence was identified from the dominant human gut bacterium Blautia obeum strain A2-162. This sequence was extended to reveal a putative lantibiotic operon with biosynthetic and transport genes, two sets of regulatory genes, immunity genes, three identical copies of a nisin-like lanA gene with an unusual leader peptide, and a fourth putative lanA gene. Comparison with other nisin clusters showed that the closest relationship was to nisin U. B. obeum A2-162 demonstrated antimicrobial activity against Clostridium perfringens when grown on solid medium in the presence of trypsin. Fusions of predicted nsoA structural sequences with the nisin A leader were expressed in Lactococcus lactis containing the nisin A operon without nisA. Expression of the nisA leader sequence fused to the predicted structural nsoA1 produced a growth defect in L. lactis that was dependent upon the presence of biosynthetic genes, but failed to produce antimicrobial activity. Insertion of the nso cluster into L. lactis MG1614 gave an increased immunity to nisin A, but this was not replicated by the expression of nsoI. Nisin A induction of L. lactis containing the nso cluster and nisRK genes allowed detection of the NsoA1 pre-peptide by Western hybridization. When this heterologous producer was grown with nisin induction on solid medium, antimicrobial activity was demonstrated in the presence of trypsin against C. perfringens, Clostridium difficile and L. lactis. This research adds to evidence that lantibiotic production may be an important trait of gut bacteria and could lead to the development of novel treatments for intestinal diseases.


Asunto(s)
Bacteriocinas/aislamiento & purificación , Clostridiales/metabolismo , Tracto Gastrointestinal/microbiología , Nisina/aislamiento & purificación , Secuencia de Aminoácidos , Bacteriocinas/genética , Clonación Molecular , Biblioteca de Genes , Orden Génico , Genes Bacterianos , Humanos , Viabilidad Microbiana , Familia de Multigenes , Nisina/genética , Fenotipo , Plásmidos/genética , Análisis de Secuencia de ADN
11.
BMC Biol ; 14: 3, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26754945

RESUMEN

BACKGROUND: Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. RESULTS: We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. CONCLUSIONS: We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori. Furthermore, the gut environment, especially pH, plays a key role in determining the outcome of interspecies competition. This makes it crucial to put greater effort into identifying the range of bacteria that may be stimulated by a given prebiotic approach. Both for reasons of efficacy and of safety, the development of prebiotics intended to benefit human health has to take account of the highly individual species profiles that may result.


Asunto(s)
Fibras de la Dieta/microbiología , Microbioma Gastrointestinal , Inulina/metabolismo , Pectinas/metabolismo , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Reactores Biológicos , Fibras de la Dieta/metabolismo , Eubacterium/crecimiento & desarrollo , Eubacterium/aislamiento & purificación , Ácidos Grasos/metabolismo , Fermentación , Firmicutes/crecimiento & desarrollo , Firmicutes/aislamiento & purificación , Humanos , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/análisis
12.
Environ Microbiol ; 18(7): 2214-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26636660

RESUMEN

Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene-based community analysis that providing amylase-pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to Eubacterium xylanophilum and Butyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5-fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate-producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi-species pathway.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Colon/microbiología , Ácidos Cumáricos/metabolismo , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Reactores Biológicos , Colon/metabolismo , Heces/microbiología , Femenino , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Masculino
13.
Environ Microbiol ; 18(2): 542-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26347002

RESUMEN

Ruminococcus champanellensis is considered a keystone species in the human gut that degrades microcrystalline cellulose efficiently and contains the genetic elements necessary for cellulosome production. The basic elements of its cellulosome architecture, mainly cohesin and dockerin modules from scaffoldins and enzyme-borne dockerins, have been characterized recently. In this study, we cloned, expressed and characterized all of the glycoside hydrolases that contain a dockerin module. Among the 25 enzymes, 10 cellulases, 4 xylanases, 3 mannanases, 2 xyloglucanases, 2 arabinofuranosidases, 2 arabinanases and one ß-glucanase were assessed for their comparative enzymatic activity on their respective substrates. The dockerin specificities of the enzymes were examined by ELISA, and 80 positives out of 525 possible interactions were detected. Our analysis reveals a fine-tuned system for cohesin-dockerin specificity and the importance of diversity among the cohesin-dockerin sequences. Our results imply that cohesin-dockerin pairs are not necessarily assembled at random among the same specificity types, as generally believed for other cellulosome-producing bacteria, but reveal a more organized cellulosome architecture. Moreover, our results highlight the importance of the cellulosome paradigm for cellulose and hemicellulose degradation by R. champanellensis in the human gut.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosa/metabolismo , Celulosomas/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Microbioma Gastrointestinal/fisiología , Ruminococcus/enzimología , Glicósido Hidrolasas/metabolismo , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Ruminococcus/genética , Cohesinas
14.
Environ Microbiol ; 18(12): 5112-5122, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27555215

RESUMEN

Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non-autolytic and exhibits lysozyme-mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell-free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell-free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/enzimología , Muramidasa/metabolismo , Ruminococcus/enzimología , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Celulosa/metabolismo , Celulosomas/genética , Celulosomas/metabolismo , Humanos , Muramidasa/genética , Ruminococcus/genética , Ruminococcus/metabolismo
15.
Environ Microbiol ; 17(5): 1615-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25142831

RESUMEN

We present here a first attempt at modelling microbial dynamics in the human colon incorporating both uncertainty and adaptation. This is based on the development of a Monod-equation based, differential equation model, which produces computer simulations of the population dynamics and major metabolites of microbial communities from the human colon. To reduce the complexity of the system, we divide the bacterial community into 10 bacterial functional groups (BFGs) each distinguished by its substrate preferences, metabolic pathways and its preferred pH range. The model simulates the growth of a large number of bacterial strains and incorporates variation in microbiota composition between people, while also allowing succession and enabling adaptation to environmental changes. The model is shown to reproduce many of the observed changes in major phylogenetic groups and key metabolites such as butyrate, acetate and propionate in response to a one unit pH shift in experimental continuous flow fermentors inoculated with human faecal microbiota. Nevertheless, it should be regarded as a learning tool to be updated as our knowledge of bacterial groups and their interactions expands. Given the difficulty of accessing the colon, modelling can play an extremely important role in interpreting experimental data and predicting the consequences of dietary modulation.


Asunto(s)
Colon/microbiología , Simulación por Computador , Microbiota , Acetatos/metabolismo , Biodiversidad , Butiratos/metabolismo , Dieta , Heces/microbiología , Humanos , Modelos Teóricos , Filogenia , Propionatos/metabolismo
16.
Environ Microbiol ; 17(9): 3407-26, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25845888

RESUMEN

A cellulolytic fiber-degrading bacterium, Ruminococcus champanellensis, was isolated from human faecal samples, and its genome was recently sequenced. Bioinformatic analysis of the R. champanellensis genome revealed numerous cohesin and dockerin modules, the basic elements of the cellulosome, and manual sequencing of partially sequenced genomic segments revealed two large tandem scaffoldin-coding genes that form part of a gene cluster. Representative R. champanellensis dockerins were tested against putative cohesins, and the results revealed three different cohesin-dockerin binding profiles which implied two major types of cellulosome architectures: (i) an intricate cell-bound system and (ii) a simplistic cell-free system composed of a single cohesin-containing scaffoldin. The cell-bound system can adopt various enzymatic architectures, ranging from a single enzyme to a large enzymatic complex comprising up to 11 enzymes. The variety of cellulosomal components together with adaptor proteins may infer a very tight regulation of its components. The cellulosome system of the human gut bacterium R. champanellensis closely resembles that of the bovine rumen bacterium Ruminococcus flavefaciens. The two species contain orthologous gene clusters comprising fundamental components of cellulosome architecture. Since R. champanellensis is the only human colonic bacterium known to degrade crystalline cellulose, it may thus represent a keystone species in the human gut.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Celulosa/metabolismo , Celulosomas/genética , Proteínas Cromosómicas no Histona/genética , Complejos Multienzimáticos/genética , Rumen/microbiología , Ruminococcus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/clasificación , Secuencia de Bases , Bovinos , Proteínas de Ciclo Celular/clasificación , Proteínas Cromosómicas no Histona/clasificación , ADN Bacteriano/genética , Heces/microbiología , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Familia de Multigenes/genética , Filogenia , Ruminococcus/genética , Ruminococcus/aislamiento & purificación , Análisis de Secuencia de ADN , Cohesinas
17.
Appl Environ Microbiol ; 81(21): 7582-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26296733

RESUMEN

Faecalibacterium prausnitzii depletion in intestinal diseases has been extensively reported, but little is known about intraspecies variability. This work aims to determine if subjects with gastrointestinal disease host mucosa-associated F. prausnitzii populations different from those hosted by healthy individuals. A new species-specific PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method targeting the 16S rRNA gene was developed to fingerprint F. prausnitzii populations in biopsy specimens from 31 healthy control (H) subjects and 36 Crohn's disease (CD), 23 ulcerative colitis (UC), 6 irritable bowel syndrome (IBS), and 22 colorectal cancer (CRC) patients. The richness of F. prausnitzii subtypes was lower in inflammatory bowel disease (IBD) patients than in H subjects. The most prevalent operational taxonomic units (OTUs) consisted of four phylotypes (OTUs with a 99% 16S rRNA gene sequence similarity [OTU99]), which were shared by all groups of patients. Their distribution and the presence of some disease-specific F. prausnitzii phylotypes allowed us to differentiate the populations in IBD and CRC patients from that in H subjects. At the level of a minimum similarity of 97% (OTU97), two phylogroups accounted for 98% of the sequences. Phylogroup I was found in 87% of H subjects but in under 50% of IBD patients (P = 0.003). In contrast, phylogroup II was detected in >75% of IBD patients and in only 52% of H subjects (P = 0.005). This study reveals that even though the main members of the F. prausnitzii population are present in both H subjects and individuals with gut diseases, richness is reduced in the latter and an altered phylotype distribution exists between diseases. This approach may serve as a basis for addressing the suitability of F. prausnitzii phylotypes to be quantified as a putative biomarker of disease and depicting the importance of the loss of these subtypes in disease pathogenesis.


Asunto(s)
Clostridiales/clasificación , Clostridiales/aislamiento & purificación , Variación Genética , Genotipo , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Biopsia , Clostridiales/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Humanos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
BMC Genomics ; 15: 160, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24568651

RESUMEN

BACKGROUND: Clostridium difficile is an anaerobic, Gram-positive bacterium that can reside as a commensal within the intestinal microbiota of healthy individuals or cause life-threatening antibiotic-associated diarrhea in immunocompromised hosts. C. difficile can also form highly resistant spores that are excreted facilitating host-to-host transmission. The C. difficile spo0A gene encodes a highly conserved transcriptional regulator of sporulation that is required for relapsing disease and transmission in mice. RESULTS: Here we describe a genome-wide approach using a combined transcriptomic and proteomic analysis to identify Spo0A regulated genes. Our results validate Spo0A as a positive regulator of putative and novel sporulation genes as well as components of the mature spore proteome. We also show that Spo0A regulates a number of virulence-associated factors such as flagella and metabolic pathways including glucose fermentation leading to butyrate production. CONCLUSIONS: The C. difficile spo0A gene is a global transcriptional regulator that controls diverse sporulation, virulence and metabolic phenotypes coordinating pathogen adaptation to a wide range of host interactions. Additionally, the rich breadth of functional data allowed us to significantly update the annotation of the C. difficile 630 reference genome which will facilitate basic and applied research on this emerging pathogen.


Asunto(s)
Clostridioides difficile/fisiología , Clostridioides difficile/patogenicidad , Redes y Vías Metabólicas , Proteoma , Transcriptoma , Butiratos/metabolismo , Clostridioides difficile/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Glucosa/metabolismo , Humanos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Mutación , Proteómica , Esporas Bacterianas , Virulencia/genética
19.
Environ Microbiol ; 16(9): 2879-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23919528

RESUMEN

The recently isolated bacterial strain 80/3 represents one of the most abundant 16S rRNA phylotypes detected in the healthy human large intestine and belongs to the Ruminococcaceae family of Firmicutes. The completed genome sequence reported here is the first for a member of this important family of bacteria from the human colon. The genome comprises two large chromosomes of 2.24 and 0.73 Mbp, leading us to propose the name Ruminococcus bicirculans for this new species. Analysis of the carbohydrate active enzyme complement suggests an ability to utilize certain hemicelluloses, especially ß-glucans and xyloglucan, for growth that was confirmed experimentally. The enzymatic machinery enabling the degradation of cellulose and xylan by related cellulolytic ruminococci is however lacking in this species. While the genome indicated the capacity to synthesize purines, pyrimidines and all 20 amino acids, only genes for the synthesis of nicotinate, NAD+, NADP+ and coenzyme A were detected among the essential vitamins and co-factors, resulting in multiple growth requirements. In vivo, these growth factors must be supplied from the diet, host or other gut microorganisms. Other features of ecological interest include two type IV pilins, multiple extracytoplasmic function-sigma factors, a urease and a bile salt hydrolase.


Asunto(s)
Colon/microbiología , Genoma Bacteriano , Microbiota , Ruminococcus/genética , Celulosa/metabolismo , Cromosomas Bacterianos , ADN Bacteriano/genética , Humanos , Filogenia , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Ruminococcus/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo
20.
PLoS Pathog ; 8(10): e1002995, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133377

RESUMEN

Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI) develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus, targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C. difficile disease and potentially other forms of intestinal dysbiosis.


Asunto(s)
Clostridioides difficile/patogenicidad , Enterocolitis Seudomembranosa/terapia , Heces/microbiología , Intestinos/microbiología , Interacciones Microbianas , Probióticos/uso terapéutico , Animales , Clostridioides difficile/efectos de los fármacos , Farmacorresistencia Bacteriana , Enterocolitis Seudomembranosa/tratamiento farmacológico , Enterocolitis Seudomembranosa/microbiología , Femenino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Consorcios Microbianos , Datos de Secuencia Molecular , Recurrencia , Vancomicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA