Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Prep Biochem Biotechnol ; 53(4): 454-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35848985

RESUMEN

The development of new starter cultures is a crucial task for the food industry to meet technological requirements and traditional products are important reservoirs for new starter cultures. In this respect, this study aimed to isolate, identify, and determine the technological characteristics of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains originated from traditional yogurt samples. Genotypic discrimination of 200 isolates revealed the presence of distinct 19 S. thermophilus and 11 Lb. delbrueckii subsp. bulgaricus strains as potential starter cultures. Strain-specific properties determined the acidification capacity of the yogurt starter cultures and a higher acidification capacity was observed for S. thermophilus strains compared to Lb. delbrueckii subsp. bulgaricus strains. Proteolytic activity was found between 0.012-0.172 and 0.078-0.406 for S. thermophilus and Lb. delbrueckii subsp. bulgaricus strains, respectively. 4 of S. thermophilus and 3 of Lb. delbrueckii subsp. bulgaricus strains were found resistant to all tested bacteriophages. The antibiotic susceptibility tests of the isolates revealed that a very low antibiotic resistance was observed for the yogurt starter cultures. Finally, the growth kinetics of selected strains were determined and the maximum specific growth rate of selected S. thermophilus and Lb. delbrueckii subsp. bulgaricus was calculated as 0.527 h-1 and 0.589 h-1, respectively.


Asunto(s)
Lactobacillus delbrueckii , Yogur , Fermentación , Cinética , Industria de Alimentos
2.
J Dairy Res ; 85(2): 222-225, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29785908

RESUMEN

The aim of the studies reported in the Research Communication was to develop a rapid spectroscopic technique as an alternative method for the classification and discrimination of milk sources by Fourier transform infrared spectroscopy (FTIR). Cow, sheep and water buffalo milk samples were collected from various local milk producers in Istanbul, Turkey. In addition, various brands of packaged milk were purchased locally. Spectrums were obtained according to milk species origin and binary mixtures prepared in increments of 10% (10, 20, 30, 40, 50, 60, 70, 80 and 90%) for each sample analysed in FTIR spectroscopy. A successful milk species (cow, sheep, and water buffalo) discrimination and classification were achieved utilising Hierarchical cluster and principle component analyses (PCA) on the basis of Euclidean distance and Ward's algorithm. Amide-I (1700-1600/cm) and Amide-II (1565-1520/cm) spectral bands were used in the chemometric method. The results of the study indicated that adulteration of milk samples can be quantitatively detected by the FTIR technique in a short time with high accuracy. In conclusion, this method could be used as a new alternative technique for routine analysis in authenticity control of milk species origin.


Asunto(s)
Búfalos , Bovinos , Contaminación de Alimentos/análisis , Leche/química , Ovinos , Espectroscopía Infrarroja por Transformada de Fourier/veterinaria , Animales , Femenino , Leche/clasificación , Proteínas de la Leche/análisis , Análisis de Componente Principal , Especificidad de la Especie , Turquía
3.
Food Sci Biotechnol ; 27(2): 499-508, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30263774

RESUMEN

In this study, yeasts were isolated and characterized from twelve traditional sourdough samples which belongs to Black Sea and Aegean regions of Turkey. Twenty six yeast species were isolated and identified by both 26S rDNA sequencing and FTIR spectroscopy. Saccharomyces cerevisiae (50%), Torulaspora delbrueckii (40%) and Kluyveromyces marxianus (10%) were found in 12 Turkish traditional sourdough samples. S. cerevisiae was found to be the most dominant species in Aegean region while T. delbrueckii was the most frequently isolated species in Black Sea region. Some technological properties of isolated yeast species such as acidity development, resistance to NaCI and potassium sorbate, and yeast effect on bread quality were investigated. Breads were prepared by S. cerevisiae TGM38 strain demonstrated the highest bread volume compared the other yeasts used in the study. This study showed the yeast diversity and technological properties of traditional Turkish sourdough breads fermented by chosen yeast species.

4.
Int J Biol Macromol ; 103: 669-675, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28536016

RESUMEN

In the present work, fenugreek seed gum (FSG)/clay nanocomposite films were prepared with nanoclays (Na+ montmorillonite [MMT], halloysite [HNT] and Nanomer® I.44 P [NM]) at different amounts (0, 2.5, 5.0 and 7.5g clay/100g FSG) by solution casting method and characterized. Increasing amount of nanoclay significantly (P<0.05) improved oxygen barrier and thermal properties of the biodegradable films. Agar diffusion tests revealed that FSG based nanocomposite films exhibited strong antimicrobial properties against foodborne pathogens namely Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus and Bacillus cereus independently of clay type and concentration. In the case of mechanical properties, nanoclay incorporation up to 5% provided higher (P<0.05) tensile strength (TS) properties while elongation at break (EB) values of the films significantly (P<0.05) decreased in the presence of clay in the film matrix. SEM micrographs showed that especially lower levels (up to 5%) of nanoclay reinforcements provided a homogeneous and smooth film structure. In conclusion, FSG based nanocomposite films reinforced with nanoclays up to 5% showed a precious potential to be used in antimicrobial food packaging applications.


Asunto(s)
Silicatos de Aluminio/química , Antibacterianos/química , Antibacterianos/farmacología , Nanocompuestos/química , Gomas de Plantas/química , Semillas/química , Trigonella/química , Bacterias/efectos de los fármacos , Arcilla , Temperatura
5.
J Food Prot ; 69(1): 93-105, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16416906

RESUMEN

Characterization of 80 Listeria monocytogenes isolates from urban and natural environments differentiated 7 and 26 EcoRI ribotypes, respectively. Whereas the majority of isolates from the natural environment represented L. monocytogenes lineage II (12 of 13 isolates), urban isolates grouped evenly into lineages I and II (32 and 33 isolates, respectively) and included two lineage III isolates. Multilocus sequence typing of all natural isolates and a randomly selected subset of 30 urban isolates showed a higher overall diversity (Simpson index of discrimination [D] of 0.987 and 0.920, respectively) than did EcoRI ribotyping (D = 0.872 and 0.911, respectively). Combined analysis with ribotype and lineage data for 414 isolates from farm sources, 165 isolates from foods and food-processing environments, and 342 human clinical isolates revealed that lineage I was significantly more common among human (P < 0.0001) isolates, whereas lineage II was more common among isolates from the natural environment, farms, and foods (P < or = 0.05). Among a total of 92 ribotypes, 31 showed significant associations with specific isolate sources. One ribotype (DUP-1039C) was significantly associated with both natural environments and farms. A spatial analysis showed a marginal association between locations in the natural environment positive for L. monocytogenes and a proximity to farms. Our data indicate that (i) L. monocytogenes strains from different sources show a high level of diversity; (ii) L. monocytogenes subtypes differ significantly in their associations with different environments, even though populations overlap; and (iii) a higher proportion of isolates from environmental sources than from human clinical cases can be classified into L. monocytogenes lineage II, which supports the classification of this lineage as an environmentally adapted subgroup.


Asunto(s)
Microbiología Ambiental , Microbiología de Alimentos , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Recuento de Colonia Microbiana , Filogenia , Ribotipificación , Especificidad de la Especie
6.
Food Chem ; 190: 1109-1115, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26213083

RESUMEN

The objective of this research was to develop a rapid spectroscopic technique as an alternative method for the differentiation and authentication of gelatin sources in food products by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combined with chemometrics. Clear discrimination and classification of all the studied gelatin sources (bovine, porcine, and fish) were achieved by hierarchical cluster and principle component analysis (PCA). Amide-I (1700-1600 cm(-1)) and Amide-II (1565-1520 cm(-1)) spectral bands were used in a chemometric method. Moreover, ATR-FTIR spectral data successfully discriminated pure bovine gelatin from mixture of bovine and porcine gelatins, which is very important for the food industry. The method that we adopted could be beneficial for rapid, simple and economic determination of both gelatin presence and its origin from food products such as yogurt, ice cream, milk dessert or other gelatin containing products such as pharmaceuticals and cosmetics.


Asunto(s)
Peces/crecimiento & desarrollo , Gelatina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Bovinos , Análisis de Componente Principal , Porcinos
7.
Carbohydr Polym ; 136: 427-40, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26572373

RESUMEN

This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties.


Asunto(s)
Fermentación , Tecnología de Alimentos/métodos , Helados/microbiología , Microbiología Industrial/métodos , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Reología , Streptococcus thermophilus/metabolismo
8.
J Food Prot ; 75(7): 1198-206, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22980001

RESUMEN

Produce-associated foodborne illnesses outbreaks have highlighted the need for more effective decontamination methods to ensure the safety of fresh produce. The main objective of this study was to evaluate the individual and combined efficacies of germicidal UV light (12.5 to 500 mJ/cm(2)), acidified sodium hypochlorite (ASC 10 to 200 ppm), and mild heat (40 to 50°C) for decontaminating green onions and baby spinach infected with Escherichia coli O157:H7. Samples were inoculated by spot and dip inoculation methods to mimic surface and infiltrated E. coli O157:H7 contamination, respectively. In green onions and baby spinach, the individual efficacies of UV, ASC, and mild-heat treatments varied based on the produce type and contamination method. Following analysis of the efficacies of the single treatments, a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 50°C was selected for spot-inoculated green onions, and a combined treatment with 125 mJ/cm(2) UV and 200 ppm of ASC at 20°C was selected for spot- and dip-inoculated baby spinach. While a >5-log reduction was achieved with the combination treatment for spot-inoculated green onions with an initial contamination level of 7.2 log CFU per spot, the same treatment reduced E. coli O157:H7 populations below the detection limit (<1 log) on green onions spot inoculated at a lower contamination level (4.3 log CFU per spot). On spot- and dip-inoculated baby spinach, the combined treatment reduced E. coli O157:H7 populations by 2.8 log CFU per spot and 2.6 log CFU/g, respectively. The combined treatment of 500 mJ/cm(2) UV and 200 ppm of ASC at 50°C selected for the decontamination of dip-inoculated green onions resulted in a 2.2-log CFU/g reduction. These findings suggest that when foodborne pathogens contaminate produce and subsequently infiltrate, attach to, or become localized into protected areas, the individual or combined applications of UV, ASC, and mild-heat treatments have limited decontamination efficacies on both green onions and baby spinach (<3 log). However, treatments combining UV, ASC, and mild heat could be a promising application for reducing pathogen populations (>5 log) on E. coli O157:H7 surface-contaminated green onions. This study also highlights the importance of developing and optimizing produce-specific decontamination methods to ensure the safety of fresh produce commodities.


Asunto(s)
Desinfectantes/farmacología , Escherichia coli O157/crecimiento & desarrollo , Manipulación de Alimentos/métodos , Irradiación de Alimentos/métodos , Cebollas/microbiología , Hipoclorito de Sodio/farmacología , Spinacia oleracea/microbiología , Seguridad de Productos para el Consumidor , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/efectos de la radiación , Calor , Humanos , Rayos Ultravioleta
9.
J Food Prot ; 75(6): 1012-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22691467

RESUMEN

Foodborne illnesses associated with fresh produce continue to be a major concern as consumer demand for healthier and nonthermally processed food increases. The objective of this study was to evaluate vaporized ethyl pyruvate (EP; CAS 617-35-6) as a safe alternative antimicrobial agent for the decontamination of Escherichia coli O157:H7 on green onions and spinach. Baby spinach leaves and green onions were inoculated with a five-strain cocktail of E. coli O157:H7 (pGFP) by the dipping method. Samples were treated with concentrations of 0, 42, 105, and 420 mg/liter vaporized EP in a 2.6-liter enclosed container. The efficacy of EP vapors for reducing E. coli O157:H7((GFP)) populations on green onions and baby spinach at 4 and 10°C was monitored for 7 and 5 days, respectively. The lowest EP concentration (42 mg/liter) resulted in a 1.7-log reduction of E. coli O157:H7((GFP)) on green onions after 7 days at 4°C and a 1.9-log reduction after 5 days at 10°C (P < 0.05). In baby spinach, the same concentration resulted in 0.9-log and 1.4-log reductions (P < 0.05) of E. coli O157:H7((GFP)) after 7 days at 4°C and 5 days at 10°C, respectively. On green onions, the highest concentration of EP (420 mg/liter) reduced the population of E. coli O157:H7((GFP)) by >4.7 log CFU/g after 7 days at 4°C and 5 days at 10°C. The same concentration was also effective for reducing E. coli O157:H7((GFP)) populations in baby spinach by 4.3 log CFU/g after 7 days at 4°C and by >6.5 log CFU/g after 3 days at 10°C. Although the successful EP treatments minimally affected the sensory attributes of green onions, the treatments resulted in significant changes in the sensory attributes of baby spinach samples stored at 4 and 10°C. These results indicate that EP is an effective antimicrobial that could be used to enhance the safety of fresh produce depending on the sensory characteristics of the product.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli O157/efectos de los fármacos , Manipulación de Alimentos/métodos , Cebollas/microbiología , Piruvatos/farmacología , Spinacia oleracea/microbiología , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Relación Dosis-Respuesta a Droga , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Humanos , Gusto , Temperatura , Factores de Tiempo
10.
Int J Food Microbiol ; 142(3): 286-91, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20674056

RESUMEN

Alicyclobacillus spp. is an important thermoacidophilic, spore-forming spoilage bacterium that is a major concern for beverage and juice industries. In order to develop effective control strategies and adequately address the prevalence of contamination sources, it is necessary to characterize Alicyclobacillus' ecology in fruit, juice and beverage production and processing environments. Alicyclobacillus spp. isolates were collected from juice, beverage, ingredients, and environmental samples over a period of ten years. A total of 141 isolates were characterized as Alicyclobacillus spp. by 16S rRNA analysis and the most frequently isolated species was found to be Alicyclobacillus acidoterrestris (45%), A. acidocaldarius subsp. acidocaldarius (30%), and A. acidocaldarius (11%). The majority of thermotolerant sporeformers isolated from apple juices and concentrates was found to be A. acidoterrestris (24 out of 36 total apple isolates); while A. acidoterrestris was most frequently associated with citrus, citrus concentrates, and their associated environments, isolated by University of Florida (UF) (15 out of total 28 UF citrus isolates). However, A. acidocaldarius and subsp. acidocaldarius were frequently isolated by Cornell University (CU) (29 out of 35 CU citrus isolates), from citrus juices made from concentrate. Four major haplotypes of Alicyclobacillus spp. were identified based on the 16S rRNA gene sequencing from the 141 isolates tested. The Allelic Types (ATs) matched the phylogenetic analysis grouping of the different Alicyclobacillus spp. based on the isolation source. Our results suggest a predisposition for certain ATs of Alicyclobacillus spp. depending on juice or ingredient isolation source.


Asunto(s)
Alicyclobacillus/clasificación , Alicyclobacillus/aislamiento & purificación , Bebidas/microbiología , Contaminación de Alimentos/análisis , Alicyclobacillus/genética , Técnicas de Tipificación Bacteriana , Recuento de Colonia Microbiana , ADN Bacteriano/química , ADN Bacteriano/genética , Microbiología Ambiental , Microbiología de Alimentos , Frutas , Haplotipos , Concentración de Iones de Hidrógeno , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA