Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(5): 910-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Animales , Humanos , Encéfalo/metabolismo
2.
PLoS Biol ; 19(11): e3001447, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758018

RESUMEN

During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.


Asunto(s)
Glucógeno Sintasa/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Miocardio/enzimología , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Dieta Alta en Grasa , Activación Enzimática , Conducta Alimentaria , Femenino , Eliminación de Gen , Intolerancia a la Glucosa/enzimología , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Especificidad de Órganos , Fosforilación
3.
J Neurochem ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401737

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

4.
Hum Mol Genet ; 29(21): 3554-3565, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33219378

RESUMEN

The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.


Asunto(s)
Glucosiltransferasas/fisiología , Glucógeno Sintasa/fisiología , Glicoproteínas/fisiología , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria/patología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768897

RESUMEN

Many lines of evidence demonstrate a correlation between liver glycogen content and food intake. We previously demonstrated that mice overexpressing protein targeting to glycogen (PTG) specifically in the liver-which have increased glycogen content in this organ-are protected from high-fat diet (HFD)-induced obesity by reduced food intake. However, the use of PTG to increase liver glycogen implies certain limitations. PTG stimulates glycogen synthesis but also inhibits the enzyme responsible for glycogen degradation. Furthermore, as PTG is a regulatory subunit of protein phosphatase 1 (PP1), which regulates many cellular functions, its overexpression could have side effects beyond the regulation of glycogen metabolism. Therefore, it is necessary to determine whether the direct activation of glycogen synthesis, without affecting its degradation or other cellular functions, has the same effects. To this end, we generated mice overexpressing a non-inactivatable form of glycogen synthase (GS) specifically in the liver (9A-MGSAlb mice). Control and 9a-MGSAlb mice were fed a standard diet (SD) or HFD for 16 weeks. Glucose tolerance and feeding behavior were analyzed. 9A-MGSAlb mice showed an increase in hepatic glycogen in fed and fasting conditions. When fed an HFD, these animals preserved their hepatic energy state, had a reduced food intake, and presented a lower body weight and fat mass than control animals, without changes in energy expenditure. Furthermore, 9A-MGSAlb animals showed improved glucose tolerance when fed an SD or HFD. Moreover, liver triacylglycerol levels that were increased after HFD feeding were lower in these mice. These results confirm that increased liver glycogen stores contribute to decreased appetite and improve glucose tolerance in mice fed an HFD. On the basis of our findings, strategies to preserve hepatic glycogen stores emerge as potential treatments for obesity and hyperglycemia.


Asunto(s)
Intolerancia a la Glucosa , Glucógeno Hepático , Animales , Ratones , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/prevención & control , Intolerancia a la Glucosa/metabolismo , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/prevención & control , Obesidad/metabolismo
6.
J Biol Chem ; 297(2): 100976, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34284060

RESUMEN

Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or ß-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.


Asunto(s)
Glucemia/metabolismo , Tolerancia al Ejercicio/fisiología , Ácidos Grasos no Esterificados/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucógeno Hepático/metabolismo , Músculo Esquelético/metabolismo , Animales , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
J Biol Chem ; 296: 100498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667544

RESUMEN

Hepatic glycogen metabolism is impaired in diabetes. We previously demonstrated that strategies to increase liver glycogen content in a high-fat-diet mouse model of obesity and insulin resistance led to a reduction in food intake and ameliorated obesity and glucose tolerance. These effects were accompanied by a decrease in insulin levels, but whether this decrease contributed to the phenotype observed in this animal was unclear. Here we sought to evaluate this aspect directly, by examining the long-term effects of increasing liver glycogen in an animal model of insulin-deficient and monogenic diabetes, namely the Akita mouse, which is characterized by reduced insulin production. We crossed Akita mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate Akita mice with increased liver glycogen content (Akita-PTGOE). Akita-PTGOE animals showed lower glycemia, lower food intake, and decreased water consumption and urine output compared with Akita mice. Furthermore, Akita-PTGOE mice showed a restoration of the hepatic energy state and a normalization of gluconeogenesis and glycolysis back to nondiabetic levels. Moreover, hepatic lipogenesis, which is reduced in Akita mice, was reverted in Akita-PTGOE animals. These results demonstrate that strategies to increase liver glycogen content lead to the long-term reduction of the diabetic phenotype, independently of circulating insulin.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevención & control , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucógeno Hepático/metabolismo , Animales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Gluconeogénesis , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
8.
Brain ; 144(8): 2349-2360, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-33822008

RESUMEN

The hallmark of Lafora disease, a fatal neurodegenerative disorder, is the accumulation of intracellular glycogen aggregates called Lafora bodies. Until recently, it was widely believed that brain Lafora bodies were present exclusively in neurons and thus that Lafora disease pathology derived from their accumulation in this cell population. However, recent evidence indicates that Lafora bodies are also present in astrocytes. To define the role of astrocytic Lafora bodies in Lafora disease pathology, we deleted glycogen synthase specifically from astrocytes in a mouse model of the disease (malinKO). Strikingly, blocking glycogen synthesis in astrocytes-thus impeding Lafora bodies accumulation in this cell type-prevented the increase in neurodegeneration markers, autophagy impairment, and metabolic changes characteristic of the malinKO model. Conversely, mice that over-accumulate glycogen in astrocytes showed an increase in these markers. These results unveil the deleterious consequences of the deregulation of glycogen metabolism in astrocytes and change the perspective that Lafora disease is caused solely by alterations in neurons.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Glucógeno/metabolismo , Enfermedad de Lafora/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Astrocitos/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Neurobiol Dis ; 147: 105173, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171226

RESUMEN

Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease.


Asunto(s)
Encéfalo/patología , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/patología , Músculo Esquelético/patología , Animales , Modelos Animales de Enfermedad , Glucógeno/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Arch Biochem Biophys ; 695: 108626, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33049291

RESUMEN

Glycogen branching enzyme (GBE1) introduces branching points in the glycogen molecule during its synthesis. Pathogenic GBE1 gene mutations lead to glycogen storage disease type IV (GSD IV), which is characterized by excessive intracellular accumulation of abnormal, poorly branched glycogen in affected tissues and organs, mostly in the liver. Using heterozygous Gbe1 knock-out mice (Gbe1+/-), we analyzed the effects of moderate GBE1 deficiency on oxidative stress in the liver. The livers of aged Gbe1+/- mice (22 months old) had decreased GBE1 protein levels, which caused a mild decrease in the degree of glycogen branching, but did not affect the tissue glycogen content. GBE1 deficiency was accompanied by increased protein carbonylation and elevated oxidation of the glutathione pool, indicating the existence of oxidative stress. Furthermore, we have observed increased levels of glutathione peroxidase and decreased activity of respiratory complex I in Gbe1+/- livers. Our data indicate that even mild changes in the degree of glycogen branching, which did not lead to excessive glycogen accumulation, may have broader effects on cellular bioenergetics and redox homeostasis. In young animals cellular homeostatic mechanisms are able to counteract those changes, while in aged tissues the changes may lead to increased oxidative stress.


Asunto(s)
Envejecimiento/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/deficiencia , Enfermedad del Almacenamiento de Glucógeno Tipo IV/metabolismo , Hígado/enzimología , Estrés Oxidativo , Envejecimiento/genética , Envejecimiento/patología , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glucógeno/genética , Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/patología , Hígado/patología , Ratones , Ratones Noqueados , Carbonilación Proteica/genética
11.
Glia ; 66(10): 2094-2107, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30152044

RESUMEN

Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTGOE ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Glucanos/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedad de Lafora/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/patología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Cuerpos de Inclusión/patología , Enfermedad de Lafora/patología , Ratones Transgénicos , Neuronas/patología
12.
Diabetologia ; 60(6): 1076-1083, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299379

RESUMEN

AIMS/HYPOTHESIS: Liver glycogen plays a key role in regulating food intake and blood glucose. Mice that accumulate large amounts of this polysaccharide in the liver are protected from high-fat diet (HFD)-induced obesity by reduced food intake. Furthermore, these animals show reversal of the glucose intolerance and hyperinsulinaemia caused by the HFD. The aim of this study was to examine the involvement of the hepatic branch of the vagus nerve in regulating food intake and glucose homeostasis in this model. METHODS: We performed hepatic branch vagotomy (HBV) or a sham operation on mice overexpressing protein targeting to glycogen (Ptg OE). Starting 1 week after surgery, mice were fed an HFD for 10 weeks. RESULTS: HBV did not alter liver glycogen or ATP levels, thereby indicating that this procedure does not interfere with hepatic energy balance. However, HBV reversed the effect of glycogen accumulation on food intake. In wild-type mice, HBV led to a significant reduction in body weight without a change in food intake. Consistent with their body weight reduction, these animals had decreased fat deposition, adipocyte size, and insulin and leptin levels, together with increased energy expenditure. Ptg OE mice showed an increase in energy expenditure and glucose oxidation, and these differences were abolished by HBV. Moreover, Ptg OE mice showed an improvement in HFD-induced glucose intolerance, which was suppressed by HBV. CONCLUSIONS/INTERPRETATION: Our results demonstrate that the regulation of food intake and glucose homeostasis by liver glycogen is dependent on the hepatic branch of the vagus nerve.


Asunto(s)
Glucemia/fisiología , Ingestión de Alimentos/fisiología , Glucógeno Hepático/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Homeostasis , Hígado/metabolismo , Ratones , Obesidad/etiología , Obesidad/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Reacción en Cadena de la Polimerasa
13.
Diabetologia ; 59(5): 1012-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26825527

RESUMEN

AIMS/HYPOTHESIS: Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. METHODS: Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. RESULTS: Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. CONCLUSIONS/INTERPRETATION: Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.


Asunto(s)
Glucosa/metabolismo , Glucógeno/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Femenino , Glucógeno/fisiología , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Homeostasis , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Noqueados
14.
Hum Mol Genet ; 23(12): 3147-56, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24452334

RESUMEN

Lafora disease is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies. It is an autosomal recessive disorder caused by mutations in either the laforin or malin gene. To study whether glycogen is primarily responsible for the neurodegeneration in Lafora disease, we generated malin knockout mice with impaired (totally or partially) glycogen synthesis. These animals did not show the increase in markers of neurodegeneration, the impairments in electrophysiological properties of hippocampal synapses, nor the susceptibility to kainate-induced epilepsy seen in the malin knockout model. Interestingly, the autophagy impairment that has been described in malin knockout animals was also rescued in this double knockout model. Conversely, two other mouse models in which glycogen is over-accumulated in the brain independently of the lack of malin showed impairment in autophagy. Our findings reveal that glycogen accumulation accounts for the neurodegeneration and functional consequences seen in the malin knockout model, as well as the impaired autophagy. These results identify the regulation of glycogen synthesis as a key target for the treatment of Lafora disease.


Asunto(s)
Autofagia , Fosfatasas de Especificidad Dual/metabolismo , Glucógeno Sintasa/genética , Glucógeno/metabolismo , Enfermedad de Lafora/fisiopatología , Ubiquitina-Proteína Ligasas/genética , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Sinapsis Eléctricas/metabolismo , Epilepsia/inducido químicamente , Epilepsia/patología , Glucógeno Sintasa/metabolismo , Hipocampo/fisiología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Ácido Kaínico/farmacología , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/patología , Ratones , Ratones Noqueados , Mutación , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R307-14, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27280431

RESUMEN

McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated. In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle from McArdle mice. The level and activation of proteins involved in contraction-induced glucose transport (AMPK, GLUT4) and glycogen synthase inhibition were increased in quadriceps muscle of McArdle mice. In addition, pCaMKII in quadriceps was reduced, suggesting lower insulin-induced glucose uptake, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism in the McArdle mouse that is related to myosin heavy chain type IIB content in muscles. In patients, the level of GLUT4 was vastly increased, as were hexokinase II and phosphofructokinase, and glycogen synthase was more inhibited, suggesting that patients adapt by increasing capture of glucose for direct metabolism, thereby significantly reducing glycogen buildup compared with the mouse model. Hence, the McArdle mouse may be a useful tool for further comparative studies of disease mechanism caused by myophosphorylase deficiency and basic studies of metabolic adaptation in muscle.


Asunto(s)
Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo V/metabolismo , Complejos Multienzimáticos , Músculo Esquelético/metabolismo , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Especificidad de la Especie , Adulto Joven
16.
J Cell Biochem ; 114(7): 1653-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23386391

RESUMEN

Glycogen is the main source of glucose for many biological events. However, this molecule may have other functions, including those that have deleterious effects on cells. The rate-limiting enzyme in glycogen synthesis is glycogen synthase (GS). It is encoded by two genes, GYS1, expressed in muscle (muscle glycogen synthase, MGS) and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase, LGS). Expression of GS and its activity have been widely studied in many tissues. To date, it is not clear which GS isoform is responsible for glycogen synthesis and the role of glycogen in testis. Using RT-PCR, Western blot and immunofluorescence, we have detected expression of MGS but not LGS in mice testis during development. We have also evaluated GS activity and glycogen storage at different days after birth and we show that both GS activity and levels of glycogen are higher during the first days of development. Using RT-PCR, we have also shown that malin and laforin are expressed in testis, key enzymes for regulation of GS activity. These proteins form an active complex that regulates MGS by poly-ubiquitination in both Sertoli cell and male germ cell lines. In addition, PTG overexpression in male germ cell line triggered apoptosis by caspase3 activation, proposing a proapoptotic role of glycogen in testis. These findings suggest that GS activity and glycogen synthesis in testis could be regulated and a disruption of this process may be responsible for the apoptosis and degeneration of seminiferous tubules and possible cause of infertility.


Asunto(s)
Células Germinativas/citología , Células Germinativas/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno/metabolismo , Isoformas de Proteínas/metabolismo , Testículo/citología , Testículo/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Glucógeno Sintasa/genética , Immunoblotting , Masculino , Ratones , Ratones Transgénicos , Isoformas de Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Túbulos Seminíferos/citología , Túbulos Seminíferos/metabolismo , Testículo/enzimología
17.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899857

RESUMEN

Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Enfermedad de Lafora , Adulto , Humanos , Anciano , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Astrocitos/patología , Glucógeno , Neuronas/patología , Enfermedad del Almacenamiento de Glucógeno/patología , Ubiquitina-Proteína Ligasas
18.
Chem Sci ; 14(26): 7147-7153, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416711

RESUMEN

The stereocontrolled installation of alkyl fragments at the alpha position of ketones is a fundamental yet unresolved transformation in organic chemistry. Herein we report a new catalytic methodology able to construct α-allyl ketones via defluorinative allylation of silyl enol ethers in a regio-, diastereo- and enantioselective manner. The protocol leverages the unique features of the fluorine atom to simultaneously act as a leaving group and to activate the fluorophilic nucleophile via a Si-F interaction. A series of spectroscopic, electroanalytic and kinetic experiments demonstrate the crucial interplay of the Si-F interaction for successful reactivity and selectivity. The generality of the transformation is demonstrated by synthesising a wide set of structurally diverse α-allylated ketones bearing two contiguous stereocenters. Remarkably, the catalytic protocol is amenable for the allylation of biologically significant natural products.

19.
Cell Rep ; 42(6): 112578, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267108

RESUMEN

Chondrosarcomas are the most common malignancy of cartilage and are associated with somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes. Somatic IDH mutations are also found in its benign precursor lesion, enchondromas, suggesting that IDH mutations are early events in malignant transformation. Human mutant IDH chondrosarcomas and mutant Idh mice that develop enchondromas investigated in our studies display glycogen deposition exclusively in mutant cells from IDH mutant chondrosarcomas and Idh1 mutant murine growth plates. Pharmacologic blockade of glycogen utilization induces changes in tumor cell behavior, downstream energetic pathways, and tumor burden in vitro and in vivo. Mutant IDH1 interacts with hypoxia-inducible factor 1α (HIF1α) to regulate expression of key enzymes in glycogen metabolism. Here, we show a critical role for glycogen in enchondromas and chondrosarcomas, which is likely mediated through an interaction with mutant IDH1 and HIF1α.


Asunto(s)
Condroma , Condrosarcoma , Isocitrato Deshidrogenasa , Animales , Humanos , Ratones , Neoplasias Óseas/metabolismo , Cartílago/metabolismo , Condrosarcoma/genética , Condrosarcoma/metabolismo , Condrosarcoma/patología , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación/genética
20.
EMBO Rep ; 11(1): 37-44, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20010805

RESUMEN

The regulation of autophagy in metazoans is only partly understood, and there is a need to identify the proteins that control this process. The diabetes- and obesity-regulated gene (DOR), a recently reported nuclear cofactor of thyroid hormone receptors, is expressed abundantly in metabolically active tissues such as muscle. Here, we show that DOR shuttles between the nucleus and the cytoplasm, depending on cellular stress conditions, and re-localizes to autophagosomes on autophagy activation. We demonstrate that DOR interacts physically with autophagic proteins Golgi-associated ATPase enhancer of 16 kDa (GATE16) and microtubule-associated protein 1A/1B-light chain 3. Gain-of-function and loss-of-function studies indicate that DOR stimulates autophagosome formation and accelerates the degradation of stable proteins. CG11347, the DOR Drosophila homologue, has been predicted to interact with the Drosophila Atg8 homologues, which suggests functional conservation in autophagy. Flies lacking CG11347 show reduced autophagy in the fat body during pupal development. All together, our data indicate that DOR regulates autophagosome formation and protein degradation in mammalian and Drosophila cells.


Asunto(s)
Autofagia/fisiología , Diabetes Mellitus , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Obesidad , Receptores de Hormona Tiroidea/metabolismo , Animales , Autofagia/genética , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila/anatomía & histología , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/metabolismo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/genética , Fagosomas/metabolismo , Unión Proteica , Transporte de Proteínas , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA