Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 586(7830): 555-559, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087914

RESUMEN

The seismic low-velocity zone (LVZ) of the upper mantle is generally associated with a low-viscosity asthenosphere that has a key role in decoupling tectonic plates from the mantle1. However, the origin of the LVZ remains unclear. Some studies attribute its low seismic velocities to a small amount of partial melt of minerals in the mantle2,3, whereas others attribute them to solid-state mechanisms near the solidus4-6 or the effect of its volatile contents6. Observations of shear attenuation provide additional constraints on the origin of the LVZ7. On the basis of the interpretation of global three-dimensional shear attenuation and velocity models, here we report partial melt occurring within the LVZ. We observe that partial melting down to 150-200 kilometres beneath mid-ocean ridges, major hotspots and back-arc regions feeds the asthenosphere. A small part of this melt (less than 0.30 per cent) remains trapped within the oceanic LVZ. Melt is mostly absent under continental regions. The amount of melt increases with plate velocity, increasing substantially for plate velocities of between 3 centimetres per year and 5 centimetres per year. This finding is consistent with previous observations of mantle crystal alignment underneath tectonic plates8. Our observations suggest that by reducing viscosity9 melt facilitates plate motion and large-scale crystal alignment in the asthenosphere.

2.
Proc Natl Acad Sci U S A ; 120(23): e2221746120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252974

RESUMEN

Crossovers (CO) shuffle genetic information and physically connect homologous chromosomal pairs, ensuring their balanced segregation during meiosis. COs arising from the major class I pathway require the activity of the well-conserved group of ZMM proteins, which, in conjunction with MLH1, facilitate the maturation of DNA recombination intermediates specifically into COs. The HEI10 Interacting Protein 1 (HEIP1) was identified in rice and proposed to be a new, plant-specific member of the ZMM group. Here, we establish and decipher the function of the Arabidopsis thaliana HEIP1 homolog in meiotic crossover formation and report its wide conservation in eukaryotes. We show that the loss of Arabidopsis HEIP1 elicits a marked reduction in meiotic COs and their redistribution toward chromosome ends. Epistasis analysis showed that AtHEIP1 acts specifically in the class I CO pathway. Further, we show that HEIP1 acts both prior to crossover designation, as the number of MLH1 foci is reduced in heip1, and at the maturation step of MLH1-marked sites into COs. Despite the HEIP1 protein being predicted to be primarily unstructured and very divergent at the sequence level, we identified homologs of HEIP1 in an extensive range of eukaryotes, including mammals.


Asunto(s)
Arabidopsis , Intercambio Genético , Humanos , Animales , Intercambio Genético/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Meiosis/genética , Mamíferos
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723072

RESUMEN

Meiotic crossovers (COs) have intriguing patterning properties, including CO interference, the tendency of COs to be well-spaced along chromosomes, and heterochiasmy, the marked difference in male and female CO rates. During meiosis, transverse filaments transiently associate the axes of homologous chromosomes, a process called synapsis that is essential for CO formation in many eukaryotes. Here, we describe the spatial organization of the transverse filaments in Arabidopsis (ZYP1) and show it to be evolutionary conserved. We show that in the absence of ZYP1 (zyp1azyp1b null mutants), chromosomes associate in pairs but do not synapse. Unexpectedly, in absence of ZYP1, CO formation is not prevented but increased. Furthermore, genome-wide analysis of recombination revealed that CO interference is abolished, with the frequent observation of close COs. In addition, heterochiasmy was erased, with identical CO rates in males and females. This shows that the tripartite synaptonemal complex is dispensable for CO formation and has a key role in regulating their number and distribution, imposing CO interference and heterochiasmy.


Asunto(s)
Arabidopsis/fisiología , Intercambio Genético , Complejo Sinaptonémico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomarcadores , Sistemas CRISPR-Cas , Cromosomas de las Plantas , Edición Génica , Meiosis/genética , Mutagénesis
4.
J Biol Chem ; 298(1): 101500, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929171

RESUMEN

In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag-gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5'-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein-protein interactions.


Asunto(s)
Productos del Gen gag , VIH-1 , Nucleoproteínas , Regiones no Traducidas 5' , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , Genómica , VIH-1/genética , VIH-1/metabolismo , Microscopía Electrónica de Transmisión , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , ARN Guía de Kinetoplastida , ARN Viral/genética , ARN Viral/metabolismo , Ensamble de Virus/genética
5.
Plant J ; 105(1): 124-135, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098690

RESUMEN

Pentatricopeptide repeat (PPR) proteins form a large family of proteins targeted to organelles, where they post-transcriptionally modulate gene expression through binding to specific RNA sequences. Among them, the mitochondria-targeted restorer-of-fertility (Rf) PPRs inhibit peculiar mitochondrial genes that are detrimental to male gametes and cause cytoplasmic male sterility (CMS). Here, we revealed three nuclear loci involved in CMS in a cross between two distant Arabidopsis thaliana strains, Sha and Cvi-0. We identified the causal gene at one of these loci as RFL24, a conserved gene encoding a PPR protein related to known Rf PPRs. By analysing fertile revertants obtained in a male sterile background, we demonstrate that RFL24 promotes pollen abortion, in contrast with the previously described Rf PPRs, which allow pollen to survive in the presence of a sterilizing cytoplasm. We show that the sterility caused by the RFL24 Cvi-0 allele results from higher expression of the gene during early pollen development. Finally, we predict a binding site for RFL24 upstream of two mitochondrial genes, the CMS gene and the important gene cob. These results suggest that the conservation of RFL24 is linked to a primary role of ensuring a proper functioning of mitochondria, and that it was subsequently diverted by the CMS gene to its benefit.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Infertilidad Vegetal , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Polen/metabolismo , Sitios de Carácter Cuantitativo/genética
6.
Metabolomics ; 18(6): 40, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699774

RESUMEN

INTRODUCTION: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS: We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS: PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION: PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .


Asunto(s)
Metabolómica , Metadatos , Curaduría de Datos/métodos , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos
8.
Int J Obes (Lond) ; 45(6): 1271-1283, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33714973

RESUMEN

BACKGROUND: Early hyperphagia and hypothalamic inflammation encountered after Western diet (WD) are linked to rodent propensity to obesity. Inflammation in several brain structures has been associated with gut dysbiosis. Since gut microbiota is highly sensitive to dietary changes, we hypothesised that immediate gut microbiota adaptation to WD in rats is involved in inflammation-related hypothalamic modifications. METHODS: We evaluated short-term impact of WD consumption (2 h, 1, 2 and 4 days) on hypothalamic metabolome and caecal microbiota composition and metabolome. Data integration analyses were performed to uncover potential relationships among these three datasets. Finally, changes in hypothalamic gene expression in absence of gut microbiota were evaluated in germ-free rats fed WD for 2 days. RESULTS: WD quickly and profoundly affected the levels of several hypothalamic metabolites, especially oxidative stress markers. In parallel, WD consumption reduced caecal microbiota diversity, modified its composition towards pro-inflammatory profile and changed caecal metabolome. Data integration identified strong correlations between gut microbiota sub-networks, unidentified caecal metabolites and hypothalamic oxidative stress metabolites. Germ-free rats displayed reduced energy intake and no changes in redox homoeostasis machinery expression or pro-inflammatory cytokines after 2 days of WD, in contrast to conventional rats, which exhibited increased SOD2, GLRX and IL-6 mRNA levels. CONCLUSION: A potentially pro-inflammatory gut microbiota and an early hypothalamic oxidative stress appear shortly after WD introduction. Tripartite data integration highlighted putative links between gut microbiota sub-networks and hypothalamic oxidative stress. Together with the absence of hypothalamic modifications in germ-free rats, this strongly suggests the involvement of the microbiota-hypothalamus axis in rat adaptation to WD introduction and in energy homoeostasis regulation.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Dieta Occidental/efectos adversos , Disbiosis , Hipotálamo/metabolismo , Animales , Citocinas/metabolismo , Disbiosis/metabolismo , Disbiosis/fisiopatología , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Masculino , Ratas , Ratas Wistar
9.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376619

RESUMEN

HIV-1 assembly occurs principally at the plasma membrane (PM) of infected cells. Gag polyprotein precursors (Pr55Gag) are targeted to the PM, and their binding is mediated by the interaction of myristoylated matrix domain and a PM-specific phosphoinositide, the phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The major synthesis pathway of PI(4,5)P2 involves the activity of phosphatidylinositol-4-phosphate 5-kinase family type 1 composed of three isoforms (PIP5K1α, PIP5K1ß, and PIP5K1γ). To examine whether the activity of a specific PIP5K1 isoform determines proper Pr55Gag localization at the PM, we compared the cellular behavior of Pr55Gag in the context of PIP5K1 inhibition using siRNAs that individually targeted each of the three isoforms in TZM-bl HeLa cells. We found that downregulation of PIP5K1α and PIP5K1γ strongly impaired the targeting of Pr55Gag to the PM with a rerouting of the polyprotein within intracellular compartments. The efficiency of Pr55Gag release was thus impaired through the silencing of these two isoforms, while PIP5K1ß is dispensable for Pr55Gag targeting to the PM. The PM mistargeting due to the silencing of PIP5K1α leads to Pr55Gag hydrolysis through lysosome and proteasome pathways, while the silencing of PIP5K1γ leads to Pr55Gag accumulation in late endosomes. Our findings demonstrated that, within the PIP5K1 family, only the PI(4,5)P2 pools produced by PIP5K1α and PIP5K1γ are involved in the Pr55Gag PM targeting process.IMPORTANCE PM specificity of Pr55Gag membrane binding is mediated through the interaction of PI(4,5)P2 with the matrix (MA) basic residues. It was shown that overexpression of a PI(4,5)P2-depleting enzyme strongly impaired PM localization of Pr55Gag However, cellular factors that control PI(4,5)P2 production required for Pr55Gag-PM targeting have not yet been characterized. In this study, by individually inhibiting PIP5K1 isoforms, we elucidated a correlation between PI(4,5)P2 metabolism pathways mediated by PIP5K1 isoforms and the targeting of Pr55Gag to the PM of TZM-bl HeLa cells. Confocal microscopy analyses of cells depleted from PIP5K1α and PIP5K1γ show a rerouting of Pr55Gag to various intracellular compartments. Notably, Pr55Gag is degraded by the proteasome and/or by the lysosomes in PIP5K1α-depleted cells, while Pr55Gag is targeted to endosomal vesicles in PIP5K1γ-depleted cells. Thus, our results highlight, for the first time, the roles of PIP5K1α and PIP5K1γ as determinants of Pr55Gag targeting to the PM.


Asunto(s)
Membrana Celular/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , VIH-1/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Precursores de Proteínas/metabolismo , Membrana Celular/genética , Membrana Celular/virología , Endosomas/genética , Endosomas/metabolismo , Endosomas/virología , VIH-1/genética , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/virología , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/genética , Proteolisis
10.
J Dairy Sci ; 104(12): 12553-12566, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34531049

RESUMEN

Metabolome profiling in biological fluids is an interesting approach for exploring markers of methane emissions in ruminants. In this study, a multiplatform metabolomics approach was used for investigating changes in milk metabolic profiles related to methanogenesis in dairy cows. For this purpose, 25 primiparous Holstein cows at similar lactation stage were fed the same diet supplemented with (treated, n = 12) or without (control, n = 13) a specific antimethanogenic additive that reduced enteric methane production by 23% with no changes in intake, milk production, and health status. The study lasted 6 wk, with sampling and measures performed in wk 5 and 6. Milk samples were analyzed using 4 complementary analytical methods, including 2 untargeted (nuclear magnetic resonance and liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer) and 2 targeted (liquid chromatography-tandem mass spectrometry and gas chromatography coupled to a flame ionization detector) approaches. After filtration, variable selection and normalization data from each analytical platform were then analyzed using multivariate orthogonal partial least square discriminant analysis. All 4 analytical methods were able to differentiate cows from treated and control groups. Overall, 38 discriminant metabolites were identified, which affected 10 metabolic pathways including methane metabolism. Some of these metabolites such as dimethylsulfoxide, dimethylsulfone, and citramalic acid, detected by nuclear magnetic resonance or liquid chromatography-mass spectrometry methods, originated from the rumen microbiota or had a microbial-host animal co-metabolism that could be associated with methanogenesis. Also, discriminant milk fatty acids detected by targeted gas chromatography were mostly of ruminal microbial origin. Other metabolites and metabolic pathways significantly affected were associated with AA metabolism. These findings provide new insight on the potential role of milk metabolites as indicators of enteric methane modifications in dairy cows.


Asunto(s)
Metano , Leche , Animales , Bovinos , Dieta/veterinaria , Femenino , Fermentación , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Lactancia , Metaboloma , Metano/metabolismo , Rumen/metabolismo
11.
J Sports Sci ; 39(9): 969-978, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33320058

RESUMEN

The objective was to compare the metabolic responses of high-level national swimmers to threshold or polarised training. 22 swimmers (n = 12 males and 10 females) participated in a 28-week cross-over intervention study consisting of 2 × 6 period weeks of training. Swimmers were assigned randomly to either training group for the first period: polarised (POL) (81% in energetic zone 1: blood lactate [La]b ≤ 2 mmol.L-1; 4% in zone 2: 2 mmol.L-1 <[La]b ≤ 4 mmol.L-1; 15% in zone 3: [La]b > 4 mmol.L-1) or threshold (THR) (65%/25%/10%). Before and after each training period, urine samples were collected for non-targeted metabolomics analysis. Mixed model analysis was performed on metabolomics data including fatigue class factors and/or training and/or interaction. Ion intensities of 6-keto-decanoylcarnitine (+31%), pregnanediol-3-glucuronide (+81%), P-cresol sulphate (+18%) were higher in the threshold group (P < 0.05) indicating higher glycogenic depletion and inflammation without alteration of the neuroendocrine stress axis. 4-phenylbutanic acid sulphate was 200% higher in less fatigued swimmers (P < 0.01) linking the anti-inflammatory activity at the cell membrane level to the subjective perception of fatigue. This research suggests the importance of replenishing glycogen stores and reducing inflammation during high thresholds training loads.


Asunto(s)
Atletas , Fatiga/orina , Espectrometría de Masas/métodos , Estrés Fisiológico , Natación , Adolescente , Ácido Butírico/orina , Carnitina/análogos & derivados , Carnitina/orina , Cresoles/orina , Estudios Cruzados , Femenino , Glucógeno/metabolismo , Humanos , Inflamación/metabolismo , Ácido Láctico/sangre , Masculino , Metabolómica , Concentración Osmolar , Pregnanodiol/análogos & derivados , Pregnanodiol/orina , Distribución Aleatoria , Ésteres del Ácido Sulfúrico/orina
12.
Eur J Nutr ; 59(8): 3425-3439, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31927670

RESUMEN

PURPOSE: Dietary intakes are reflected in plasma by the presence of hundreds of exogenous metabolites and variations in endogenous metabolites. The exploration of diet-related plasma metabolic profiles could help to better understand the impact of overall diet on health. Our aim was to identify metabolomic signatures reflecting overall diet in women from the French general population. METHODS: This cross-sectional study included 160 women in the SU.VI.MAX cohort with detailed dietary data (≥ 10 24-h dietary records) selected according to their level of adherence to the French dietary recommendations, represented by the validated score mPNNS-GS; 80 women from the 10th decile of the score were matched with 80 women from the 1st decile. Plasma metabolomic profiles were acquired using untargeted UPLC-QToF mass spectrometry analysis. The associations between metabolomic profiles and the mPNNG-GS, its components and Principal Component Analyses-derived dietary patterns were investigated using multivariable conditional logistic regression models and partial correlations. RESULTS: Adherence to the dietary recommendations was positively associated with 3-indolepropionic acid and pipecolic acid (also positively associated with fruit and vegetable intake and a healthy diet)-2 metabolites linked to microbiota and inversely associated with lysophosphatidylcholine (LysoPC(17:1)), acylcarnitine C9:1 (also inversely associated with a healthy diet), acylcarnitine C11:1 and 2-deoxy-D-glucose. Increased plasma levels of piperine and Dihydro4mercapto-3(2H) furanone were observed in women who consumed a Western diet and a healthy diet, respectively. Ethyl-ß-D-glucopyranoside was positively associated with alcohol intake. Plasma levels of LysoPC(17:1), cholic acid, phenylalanine-phenylalanine and phenylalanine and carnitine C9:1 decreased with the consumption of vegetable added fat, sweetened food, milk and dairy products and fruit and vegetable intakes, respectively. CONCLUSION: This study highlighted several metabolites from both host and microbial metabolism reflecting the long-term impact of the overall diet. TRIAL REGISTRATION: SU.VI.MAX, clinicaltrials.gov NCT00272428. Registered 3 January 2006, https://clinicaltrials.gov/show/NCT00272428.


Asunto(s)
Dieta , Metabolómica , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Verduras
13.
PLoS Genet ; 13(1): e1006551, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28060933

RESUMEN

The extent of epigenetic variation is currently well documented, but the number of natural epialleles described so far remains very limited. Determining the relevance of epigenetic changes for natural variation is an important question of research that we investigate by isolating natural epialleles segregating in Arabidopsis recombinant populations. We previously described a genetic incompatibility among Arabidopsis strains based on the silencing of a gene involved in fitness. Here, we isolated a new epiallele resulting from the silencing of a transfer-RNA editing gene in an Arabidopsis accession from the Netherlands (Nok-1). Crosses with the reference accession Col-0 show a complete incompatibility between this epiallele and another locus localized on a different chromosome. We demonstrate that conversion of an unmethylated version of this allele occurs in hybrids, associated with modifications of small RNA populations. These epialleles can also spontaneously revert within the population. Furthermore, we bring evidence that neither METHYLTRANSFERASE 1, maintaining methylation at CGs, nor components of RNA-directed DNA methylation, are key factors for the transmission of the epiallele over generations. This depends only on the self-reinforcing loop between CHROMOMETHYLASE 3 and KRYPTONITE, involving DNA methylated in the CHG context and histone H3 lysine 9 methylation. Our findings reveal a predominant role of this loop in maintaining a natural epiallele.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Epigénesis Genética , Retroalimentación Fisiológica , Silenciador del Gen , Histonas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Histonas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
14.
Proc Natl Acad Sci U S A ; 114(5): 944-949, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096333

RESUMEN

Antibodies are a highly successful class of biological drugs, with over 50 such molecules approved for therapeutic use and hundreds more currently in clinical development. Improvements in technology for the discovery and optimization of high-potency antibodies have greatly increased the chances for finding binding molecules with desired biological properties; however, achieving drug-like properties at the same time is an additional requirement that is receiving increased attention. In this work, we attempt to quantify the historical limits of acceptability for multiple biophysical metrics of "developability." Amino acid sequences from 137 antibodies in advanced clinical stages, including 48 approved for therapeutic use, were collected and used to construct isotype-matched IgG1 antibodies, which were then expressed in mammalian cells. The resulting material for each source antibody was evaluated in a dozen biophysical property assays. The distributions of the observed metrics are used to empirically define boundaries of drug-like behavior that can represent practical guidelines for future antibody drug candidates.


Asunto(s)
Anticuerpos Monoclonales , Descubrimiento de Drogas/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Fenómenos Biofísicos , Aprobación de Drogas , Células HEK293 , Humanos , Inmunoglobulina G/química
15.
J Nutr ; 149(10): 1701-1713, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31240312

RESUMEN

BACKGROUND: Banana is one of the most widely consumed fruits in the world. However, information regarding its health effects is scarce. Biomarkers of banana intake would allow a more accurate assessment of its consumption in nutrition studies. OBJECTIVES: Using an untargeted metabolomics approach, we aimed to identify the banana-derived metabolites present in urine after consumption, including new candidate biomarkers of banana intake. METHODS: A randomized controlled study with a crossover design was performed on 12 healthy subjects (6 men, 6 women, mean ± SD age: 30.0 ± 4.9 y; mean ± SD BMI: 22.5 ± 2.3 kg/m2). Subjects underwent 2 dietary interventions: 1) 250 mL control drink (Fresubin 2 kcal fiber, neutral flavor; Fresenius Kabi), and 2) 240 g banana + 150 mL control drink. Twenty-four-hour urine samples were collected and analyzed with ultra-performance liquid chromatography coupled to a quadrupole time-of-flight MS and 2-dimensional GC-MS. The discovered biomarkers were confirmed in a cross-sectional study [KarMeN (Karlsruhe Metabolomics and Nutrition study)] in which 78 subjects (mean BMI: 22.8; mean age: 47 y) were selected reflecting high intake (126-378 g/d), low intake (47.3-94.5 g/d), and nonconsumption of banana. The confirmed biomarkers were examined singly or in combinations, for established criteria of validation for biomarkers of food intake. RESULTS: We identified 33 potentially bioactive banana metabolites, of which 5 metabolites, methoxyeugenol glucuronide (MEUG-GLUC), dopamine sulfate (DOP-S), salsolinol sulfate, xanthurenic acid, and 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-ß-carboline sulfate, were confirmed as candidate intake biomarkers. We demonstrated that the combination of MEUG-GLUC and DOP-S performed best in predicting banana intake in high (AUCtest = 0.92) and low (AUCtest = 0.87) consumers. The new biomarkers met key criteria establishing their current applicability in nutrition and health research for assessing the occurrence of banana intake. CONCLUSIONS: Our metabolomics study in healthy men and women revealed new putative bioactive metabolites of banana and a combined biomarker of intake. These findings will help to better decipher the health effects of banana in future focused studies. This study was registered at clinicaltrials.gov as NCT03581955 and with the Ethical Committee for the Protection of Human Subjects Sud-Est 6 as CPP AU 1251, IDRCB 2016-A0013-48; the KarMeN study was registered with the German Clinical Trials Register (DRKS00004890). Details about the study can be obtained from https://www.drks.de.


Asunto(s)
Metabolómica , Musa , Adulto , Análisis de Varianza , Biomarcadores/sangre , Biomarcadores/orina , Cromatografía Liquida , Estudios Cruzados , Estudios Transversales , Dieta , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Reproducibilidad de los Resultados
16.
Proc Natl Acad Sci U S A ; 113(13): 3687-92, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26979961

RESUMEN

Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics ofA. thaliana.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Adaptación Fisiológica , Evolución Biológica , Núcleo Celular/genética , Núcleo Celular/fisiología , Citoplasma/genética , Citoplasma/fisiología , Epistasis Genética , Aptitud Genética , Variación Genética , Genoma de Planta , Fenotipo
17.
BMC Genomics ; 18(1): 758, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28962550

RESUMEN

BACKGROUND: Colon cancer occurrence is increasing worldwide, making it the third most frequent cancer. Although many therapeutic options are available and quite efficient at the early stages, survival is strongly decreased when the disease has spread to other organs. The identification of molecular markers of colon cancer is likely to help understanding its course and, eventually, to uncover novel genes to be targeted by drugs. In this study, we compared gene expression in a set of 95 human colon cancer samples to that in 19 normal colon mucosae, focusing on 401 genes from 5 selected pathways (Apoptosis, Cancer, Cholesterol metabolism and lipoprotein signaling, Drug metabolism, Wnt/beta-catenin). Deregulation of mRNA levels largely matched that of proteins, leading us to build in silico protein networks, starting from mRNA levels, to identify key proteins central to network activity. RESULTS: Among the analyzed genes, 10.5% (42) had no reported link with colon cancer, including the SFRP1, IGF1 and ADH1B (down), and MYC and IL8 (up), whose encoded proteins were most interacting with other proteins from the same or even distinct networks. Analyzing all pathways globally led us to uncover novel functional links between a priori unrelated or rather remotely connected pathways, such as the Drug metabolism and the Cancer pathways or, even more strikingly, between the Cholesterol metabolism and lipoprotein signaling and the Cancer pathways. In addition, we analyzed the responsiveness of some of the deregulated genes essential to network activities, to chemotherapeutic agents used alone or in presence of Lovastatin, a lipid-lowering drug. Some of these treatments could oppose the deregulations occurring in cancer samples, including those of the CHECK2, CYP51A1, HMGCS1, ITGA2, NME1 or VEGFA genes. CONCLUSIONS: Our network-based approach allowed discovering genes not previously known to play regulatory roles in colon cancer. Our results also showed that selected drug treatments might revert the cancer-specific deregulation of genes playing prominent roles within the networks operating to maintain colon homeostasis. Among those genes, some could constitute novel testable targets to eliminate colon cancer cells, either directly or, potentially, through the use of lipid-lowering drugs such as statins, in association with selected anticancer drugs.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Terapia Molecular Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Células HT29 , Humanos , Lovastatina/farmacología , Lovastatina/uso terapéutico
18.
Retrovirology ; 11: 103, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25422070

RESUMEN

BACKGROUND: Interferon induced transmembrane proteins 1, 2 and 3 (IFITMs) belong to a family of highly related antiviral factors that have been shown to interfere with a large spectrum of viruses including Filoviruses, Coronaviruses, Influenza virus, Dengue virus and HIV-1. In all these cases, the reported mechanism of antiviral inhibition indicates that the pool of IFITM proteins present in target cells blocks incoming viral particles in endosomal vesicles where they are subsequently degraded. RESULTS: In this study, we describe an additional mechanism through which IFITMs block HIV-1. In virus-producing cells, IFITMs coalesce with forming virions and are incorporated into viral particles. Expression of IFITMs during virion assembly leads to the production of virion particles of decreased infectivity that are mostly affected during entry in target cells. This mechanism of inhibition is exerted against different retroviruses and does not seem to be dependent on the type of Envelope present on retroviral particles. CONCLUSIONS: The results described here identify a novel mechanism through which IFITMs affect HIV-1 infectivity during the late phases of the viral life cycle. Put in the context of data obtained by other laboratories, these results indicate that IFITMs can target HIV at two distinct moments of its life cycle, in target cells as well as in virus-producing cells. These results raise the possibility that IFITMs could similarly affect distinct steps of the life cycle of a number of other viruses.


Asunto(s)
Antígenos de Diferenciación/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Ensamble de Virus , Internalización del Virus , Antivirales/metabolismo , VIH-1/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Humanos
19.
Clin Immunol ; 155(1): 17-26, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110157

RESUMEN

TNF-related apoptosis ligand (TRAIL) induces apoptosis of HIV-1-exposed CD4 T cells expressing the death receptor 5 (DR5) in vitro and has been associated with reduced CD4 T cell number in viremic HIV-1-infected patients. Alterations of the TRAIL/DR5 apoptotic pathway could be involved in the absence of massive CD4 T cell depletion in HIV-1-infected controllers (HIC). We studied here apoptosis of CD4 T cells from HIV-infected progressors and controllers. Reduced apoptosis of CD4 T cells from HIC was observed upon HIV stimulation. This lower apoptosis correlated with a deficiency of DR5 cell surface expression by CD4 T cells upon HIV-1 stimulation. The significant lower apoptosis observed in CD4 T cells after HIV exposure, associated with lower expression of membrane DR5 could explain the better survival of HIV-specific CD4 T cells from HIV controllers. The levels of DR5 cell surface expression on CD4 T cells could represent a new prognostic marker.


Asunto(s)
Apoptosis/fisiología , Linfocitos T CD4-Positivos/fisiología , Regulación de la Expresión Génica/inmunología , Infecciones por VIH/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adulto , Membrana Celular , VIH/fisiología , Infecciones por VIH/inmunología , Humanos , Masculino , Persona de Mediana Edad , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Viremia
20.
J Virol ; 87(5): 2587-96, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23255800

RESUMEN

Type I interferons induce a complex transcriptional program that leads to a generalized antiviral response against a large panel of viruses, including human immunodeficiency virus type 1 (HIV-1). However, despite the fact that interferons negatively regulate HIV-1 ex vivo, a chronic interferon state is linked to the progression of AIDS and to robust viral replication, rather than protection, in vivo. To explain this apparent contradiction, we hypothesized that HIV-1 may have evolved a partial resistance to interferon, and to test this hypothesis, we analyzed the effects of alpha interferon (IFN-α) on the infectivity of HIV-1, human immunodeficiency virus type 2 (HIV-2), and rhesus monkey simian immunodeficiency virus (SIVmac). The results we obtained indicate that HIV-1 is more resistant to an IFN-α-induced response than are HIV-2 and SIVmac. Our data indicate that the accumulation of viral DNA is more compromised following the infection of IFN-α-treated cells with HIV-2 and SIVmac than with HIV-1. This defect correlates with a faster destabilization of HIV-2 viral nucleoprotein complexes (VNCs), suggesting a link between VNC destabilization and impaired viral DNA (vDNA) accumulation. The differential susceptibilities to IFN-α of the primate lentiviruses tested here do not map to the capsid protein (CA), excluding de facto a role for human tripartite motif protein isoform 5 alpha (Trim5α) in this restriction; this also suggests that an additional restriction mechanism differentially affects primate lentivirus infection. The different behaviors of HIV-1 and HIV-2 with respect to IFN-α responses may account at least in part for the differences in pathogenesis observed between these two virus types.


Asunto(s)
VIH-1/fisiología , VIH-2/fisiología , Interferón-alfa/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Proteínas de la Cápside/efectos de los fármacos , Línea Celular Tumoral , ADN Viral/genética , ADN Viral/metabolismo , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/inmunología , VIH-2/inmunología , Células HeLa , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Macrófagos/virología , Glicoproteínas de Membrana , Proteínas de los Retroviridae/metabolismo , Virus de la Inmunodeficiencia de los Simios/inmunología , Proteínas del Envoltorio Viral , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA