Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 572(7767): 125-130, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341277

RESUMEN

Neuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice. MDC1A is caused by mutations in LAMA2 that lead to nonfunctional laminin-α2, which compromises the stability of muscle fibres and the myelination of peripheral nerves. Transgenic overexpression of Lama1, which encodes a structurally similar protein called laminin-α1, ameliorates muscle wasting and paralysis in mouse models of MDC1A, demonstrating its importance as a compensatory modifier of the disease1. However, postnatal upregulation of Lama1 is hampered by its large size, which exceeds the packaging capacity of vehicles that are clinically relevant for gene therapy. We modulate expression of Lama1 in the dy2j/dy2j mouse model of MDC1A using an adeno-associated virus (AAV9) carrying a catalytically inactive Cas9 (dCas9), VP64 transactivators and single-guide RNAs that target the Lama1 promoter. When pre-symptomatic mice were treated, Lama1 was upregulated in skeletal muscles and peripheral nerves, which prevented muscle fibrosis and paralysis. However, for many disorders it is important to investigate the therapeutic window and reversibility of symptoms. In muscular dystrophies, it has been hypothesized that fibrotic changes in skeletal muscle are irreversible. However, we show that dystrophic features and disease progression were improved and reversed when the treatment was initiated in symptomatic dy2j/dy2j mice with apparent hindlimb paralysis and muscle fibrosis. Collectively, our data demonstrate the feasibility and therapeutic benefit of CRISPR-dCas9-mediated upregulation of Lama1, which may enable mutation-independent treatment for all patients with MDC1A. This approach has a broad applicability to a variety of disease-modifying genes and could serve as a therapeutic strategy for many inherited and acquired diseases.


Asunto(s)
Genes Modificadores/genética , Terapia Genética/métodos , Laminina/genética , Laminina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/terapia , Regulación hacia Arriba , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Progresión de la Enfermedad , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Edición Génica , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación
2.
Mol Cell Proteomics ; 13(11): 3001-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24994560

RESUMEN

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).


Asunto(s)
Calcio/metabolismo , Diafragma/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Laminina/deficiencia , Músculo Esquelético/metabolismo , Animales , Diafragma/patología , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Expresión Génica/genética , Perfilación de la Expresión Génica , Laminina/genética , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular Animal , Espectrometría de Masas en Tándem
3.
Am J Pathol ; 184(3): 740-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24393714

RESUMEN

The adhesion molecule laminin α2 chain interacts with the dystrophin-glycoprotein complex, contributes to normal muscle function, and protects skeletal muscles from damage. Complete loss of the laminin α2 chain in mice results in a severe muscular dystrophy phenotype and death at approximately 3 weeks of age. However, it is not clear if the remaining members of the dystrophin-glycoprotein complex further protect laminin α2 chain-deficient skeletal muscle fibers from degeneration. Hence, we generated mice deficient in laminin α2 chain and dystrophin (dy(3K)/mdx) and mice devoid of laminin α2 chain and ß-sarcoglycan (dy(3K)/Sgcb). Severe muscular dystrophy and a lack of nourishment inevitably led to massive muscle wasting and death in double-knockout animals. The dy(3K)/Sgcb mice were generally more severely affected than dy(3K)/mdx mice. However, both double-knockout strains displayed exacerbated muscle degeneration, inflammation, fibrosis, and reduced life span (5 to 13 days) compared with single-knockout animals. However, neither extraocular nor cardiac muscle was affected in double-knockout animals. Our results suggest that, although laminin α2 chain, dystrophin, and ß-sarcoglycan are all part of the same adhesion complex, they have complementary, but nonredundant, roles in maintaining sarcolemmal integrity and protecting skeletal muscle fibers from damage. Moreover, the double-knockout mice could potentially serve as models in which to study extremely aggressive muscle-wasting conditions.


Asunto(s)
Distrofina/metabolismo , Laminina/genética , Distrofia Muscular Animal/patología , Sarcoglicanos/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Femenino , Laminina/deficiencia , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Fenotipo , Regeneración , Sarcoglicanos/genética
4.
Am J Pathol ; 184(5): 1518-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631023

RESUMEN

Congenital muscular dystrophy, caused by mutations in LAMA2 (the gene encoding laminin α2 chain), is a severe and incapacitating disease for which no therapy is yet available. We have recently demonstrated that proteasome activity is increased in laminin α2 chain-deficient muscle and that treatment with the nonpharmaceutical proteasome inhibitor MG-132 reduces muscle pathology in laminin α2 chain-deficient dy(3K)/dy(3K) mice. Here, we explore the use of the selective and therapeutic proteasome inhibitor bortezomib (currently used for treatment of relapsed multiple myeloma and mantle cell lymphoma) in dy(3K)/dy(3K) mice and in congenital muscular dystrophy type 1A muscle cells. Outcome measures included quantitative muscle morphology, gene and miRNA expression analyses, proteasome activity, motor activity, and survival. Bortezomib improved several histological hallmarks of disease, partially normalized miRNA expression (miR-1 and miR-133a), and enhanced body weight, locomotion, and survival of dy(3K)/dy(3K) mice. In addition, bortezomib reduced proteasome activity in congenital muscular dystrophy type 1A myoblasts and myotubes. These findings provide evidence that the proteasome inhibitor bortezomib partially reduces laminin α2 chain-deficient muscular dystrophy. Investigation of the clinical efficacy of bortezomib administration in congenital muscular dystrophy type 1A clinical trials may be warranted.


Asunto(s)
Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Laminina/deficiencia , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/patología , Pirazinas/farmacología , Pirazinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Peso Corporal/efectos de los fármacos , Bortezomib , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Laminina/metabolismo , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/patología , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/patología , Distrofia Muscular Animal/genética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Análisis de Supervivencia
5.
Curr Top Membr ; 76: 31-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26610911

RESUMEN

Laminin-211 is a major constituent of the skeletal muscle basement membrane. It stabilizes skeletal muscle and influences signal transduction events from the myomatrix to the muscle cell. Mutations in the gene encoding the α2 chain of laminin-211 lead to congenital muscular dystrophy type 1A (MDC1A), a life-threatening disease characterized by severe hypotonia, progressive muscle weakness, and joint contractures. Common complications include severely impaired motor ability, respiratory failure, and feeding difficulties. Several adequate animal models for laminin-α2 chain deficiency exist and analyses of different MDC1A mouse models have led to a significant improvement in our understanding of MDC1A pathogenesis. Importantly, the animal models have been indispensable tools for the preclinical development of new therapeutic approaches for laminin-α2 chain deficiency, highlighting a number of important disease driving mechanisms that can be targeted by pharmacological approaches. In this chapter, I will describe laminin-211 and discuss the cellular and molecular pathophysiology of MDC1A as well as progression toward development of treatment.


Asunto(s)
Distrofias Musculares/fisiopatología , Distrofias Musculares/terapia , Animales , Humanos , Laminina/deficiencia , Laminina/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Fenotipo , Receptores de Superficie Celular/metabolismo
6.
Hum Mol Genet ; 20(3): 541-52, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21084425

RESUMEN

Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Laminina/metabolismo , Leupeptinas/farmacología , Atrofia Muscular/tratamiento farmacológico , Distrofia Muscular Animal/tratamiento farmacológico , Inhibidores de Proteasoma , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Laminina/deficiencia , Laminina/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Fenotipo , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitina/genética , Ubiquitinación
7.
Hum Mol Genet ; 20(24): 4891-902, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21920942

RESUMEN

Congenital muscular dystrophy caused by laminin α2 chain deficiency (also known as MDC1A) is a severe and incapacitating disease, characterized by massive muscle wasting. The ubiquitin-proteasome system plays a major role in muscle wasting and we recently demonstrated that increased proteasomal activity is a feature of MDC1A. The autophagy-lysosome pathway is the other major system involved in degradation of proteins and organelles within the muscle cell. However, it remains to be determined if the autophagy-lysosome pathway is dysregulated in muscular dystrophies, including MDC1A. Using the dy(3K)/dy(3K) mouse model of laminin α2 chain deficiency and MDC1A patient muscle, we show here that expression of autophagy-related genes is upregulated in laminin α2 chain-deficient muscle. Moreover, we found that autophagy inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. In particular, we show that systemic injection of 3-methyladenine (3-MA) reduces muscle fibrosis, atrophy, apoptosis and increases muscle regeneration and muscle mass. Importantly, lifespan and locomotive behavior were also greatly improved. These findings indicate that enhanced autophagic activity is pathogenic and that autophagy inhibition holds a promising therapeutic potential in the treatment of MDC1A.


Asunto(s)
Autofagia , Laminina/antagonistas & inhibidores , Laminina/deficiencia , Músculos/patología , Distrofias Musculares/patología , Adenina/administración & dosificación , Adenina/análogos & derivados , Adenina/farmacología , Adenina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/genética , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Quimioterapia Combinada , Fibrosis , Regulación de la Expresión Génica , Inyecciones , Laminina/metabolismo , Leupeptinas/farmacología , Leupeptinas/uso terapéutico , Ratones , Actividad Motora/efectos de los fármacos , Músculos/metabolismo , Músculos/fisiopatología , Atrofia Muscular/complicaciones , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Distrofias Musculares/complicaciones , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/fisiopatología , Enfermedades del Sistema Nervioso Periférico/complicaciones , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Fenotipo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración , Análisis de Supervivencia
8.
J Pathol ; 226(2): 200-18, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21989954

RESUMEN

The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.


Asunto(s)
Comunicación Celular/fisiología , Proteínas de la Matriz Extracelular/fisiología , Matriz Extracelular/patología , Distrofias Musculares/patología , Animales , Colágeno Tipo IV/química , Colágeno Tipo IV/fisiología , Modelos Animales de Enfermedad , Distroglicanos/química , Distroglicanos/fisiología , Distrofina/química , Distrofina/fisiología , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/química , Humanos , Integrinas/química , Integrinas/fisiología , Laminina/química , Laminina/fisiología , Sarcoglicanos/química , Sarcoglicanos/fisiología
9.
J Exp Med ; 203(4): 1007-19, 2006 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-16585265

RESUMEN

The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood-brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used central nervous system inflammatory model, leukocytes first penetrate the endothelial cell monolayer and underlying BM using integrin beta1-mediated processes, but mechanisms used to penetrate the second barrier defined by the parenchymal BM and glia limitans remain uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase [MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal BM via high affinity interactions with laminins 1 and 2, perlecan and agrin, is identified as a specific substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and preventing leukocyte infiltration. This is the first description of selective in situ proteolytic damage of a BBB-specific molecule at sites of leukocyte infiltration.


Asunto(s)
Membrana Basal/metabolismo , Distroglicanos/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Rodamiento de Leucocito/inmunología , Animales , Astrocitos/metabolismo , Membrana Basal/enzimología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/enzimología , Gelatinasas/genética , Gelatinasas/metabolismo , Hidrólisis , Leucocitos/citología , Leucocitos/enzimología , Macrófagos/enzimología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Am J Pathol ; 178(4): 1728-37, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21435454

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder, and one of the most frequently encountered, but one for which there is as yet no treatment. Laminin-111 protein therapy was recently shown to be a promising approach to prevent muscle disease in the mdx mouse model of DMD. The present study demonstrated that transgenic expression of laminin α1 chain in mdx animals, resulting in laminin-111 heterotrimer formation in mdx muscle, does not improve the dystrophic phenotype. The mdx mice overexpressing laminin-111 (mdxLMα1) display features of mdx littermates: dystrophic pattern of muscle biopsy, elevated creatine kinase levels, reduced muscle strength, and decreased sarcolemmal integrity. Increased expression of integrin α7 is not beneficial for mdxLMα1 muscle, and components of the dystrophin-glycoprotein complex are not restored at the sarcolemma on laminin-111 overexpression. In summary, further studies are needed to verify the functionality of laminin-111 protein therapy in DMD and to describe the molecular events resulting from this approach.


Asunto(s)
Regulación de la Expresión Génica , Laminina/biosíntesis , Laminina/genética , Distrofia Muscular de Duchenne/genética , Animales , Animales Modificados Genéticamente , Biopsia , Creatina Quinasa/metabolismo , Azul de Evans/farmacología , Laminina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Músculos/patología , Transgenes
11.
J Mater Sci Mater Med ; 23(10): 2489-98, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22772482

RESUMEN

Successful tissue engineering with the aid of a polymer scaffold offers the possibility to produce a larger construct and to mould the shape after the defect. We investigated the use of cryogelation to form protein-based scaffolds through different types of formation mechanisms; enzymatic crosslinking, chemical crosslinking, and non-covalent interactions. Casein was found to best suited for enzymatic crosslinking, gelatin for chemical crosslinking, and ovalbumin for non-covalent interactions. Fibroblasts and myoblasts were used to evaluate the cryogels for tissue engineering purposes. The stability of the cryogels over time in culture differed depending on formation mechanism. Casein cryogels showed best potential to be used in skeletal tissue engineering, whereas gelatin cryogels would be more suitable for compliable soft tissues even though it also seemed to support a myogenic phenotype. Ovalbumin cryogels would be better suited for elastic tissues with faster regeneration properties due to its faster degradation time. Overall, the cryogelation technique offers a fast, cheap and reproducible way of creating porous scaffolds from proteins without the use of toxic compounds.


Asunto(s)
Congelación , Ingeniería de Tejidos , Andamios del Tejido , Animales , Línea Celular , Proliferación Celular , Criogeles , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Electrónica de Rastreo
12.
FEBS J ; 288(24): 6850-6912, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33605520

RESUMEN

Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.


Asunto(s)
Matriz Extracelular/metabolismo , Animales , Matriz Extracelular/química , Humanos
13.
Cell Tissue Res ; 339(1): 259-68, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19693542

RESUMEN

Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.


Asunto(s)
Adipocitos/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Laminina/metabolismo , Células de Schwann/metabolismo , Adipocitos/citología , Animales , Desarrollo Embrionario/fisiología , Células Endoteliales/citología , Células Epiteliales/citología , Matriz Extracelular/química , Humanos , Laminina/química , Especificidad de Órganos/fisiología , Organogénesis/fisiología , Células de Schwann/citología , Relación Estructura-Actividad
14.
Muscle Nerve ; 42(1): 30-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20544910

RESUMEN

Several approaches to treat laminin alpha2 chain-deficient congenital muscular dystrophy (MDC1A) in mouse models have been undertaken. Most have shown promising results in young animals. However, older animals have only been characterized to some extent. Herein we analyze the lifespan of laminin alpha2 chain-deficient mice with transgenic overexpression of laminin alpha1 chain. Further outcome measures included internalized myonuclei, heart fibrosis, grip strength, and serum creatine kinase activity. We show that laminin alpha2-chain-deficient animals that overexpress laminin alpha1 chain survive to up to 1.5-2 years of age. Furthermore, they displayed improved skeletal and heart muscle morphology, near-normal muscle strength, and normalized creatine kinase levels. Such an improvement of the dystrophic phenotype that persists to old age has not been previously demonstrated in mice. Our findings hold promise with regard to the efficient treatment of MDC1A patients in the future.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Laminina/biosíntesis , Laminina/deficiencia , Laminina/genética , Animales , Creatina Quinasa/metabolismo , Femenino , Fibrosis , Técnica del Anticuerpo Fluorescente , Fuerza de la Mano/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miocardio/patología
15.
Front Mol Neurosci ; 13: 59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457577

RESUMEN

The research on laminin α2 chain-deficient congenital muscular dystrophy (LAMA2-CMD) advanced rapidly in the last few decades, largely due to availability of good mouse models for the disease and a strong interest in preclinical studies from scientists all over the world. These mouse models continue to provide a solid platform for understanding the LAMA2-CMD pathology. In addition, they enable researchers to test laborious, necessary routines, but also the most creative scientific approaches in order to design therapy for this devastating disorder. In this review we present animals belonging to the laminin α2 chain-deficient "dy/dy" mouse family (dy/dy, dy 2J/dy 2J, dy 3K/dy 3K, dy W/dy W, et al.) and a summary of the scientific progress they facilitated. We also raise a few questions that need to be addressed in order to maximize the usefulness of laminin α2 murine mutants and to further advance the LAMA2-CMD studies. We believe that research opportunities offered by the mouse models for LAMA2-CMD will continuously support our efforts to find a treatment for the disease.

16.
Antioxidants (Basel) ; 9(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197453

RESUMEN

Congenital muscular dystrophy with laminin α2 chain-deficiency (LAMA2-CMD) is a severe neuromuscular disorder without a cure. Using transcriptome and proteome profiling as well as functional assays, we previously demonstrated significant metabolic impairment in skeletal muscle from LAMA2-CMD patients and mouse models. Reactive oxygen species (ROS) increase when oxygen homeostasis is not maintained and, here, we investigate whether oxidative stress indeed is involved in the pathogenesis of LAMA2-CMD. We also analyze the effects of two antioxidant molecules, N-acetyl-L-cysteine (NAC) and vitamin E, on disease progression in the dy2J/dy2J mouse model of LAMA2-CMD. We demonstrate increased ROS levels in LAMA2-CMD mouse and patient skeletal muscle. Furthermore, NAC treatment (150 mg/kg IP for 6 days/week for 3 weeks) led to muscle force loss prevention, reduced central nucleation and decreased the occurrence of apoptosis, inflammation, fibrosis and oxidative stress in LAMA2-CMD muscle. In addition, vitamin E (40 mg/kg oral gavage for 6 days/week for 2 weeks) improved morphological features and reduced inflammation and ROS levels in dy2J/dy2J skeletal muscle. We suggest that NAC and to some extent vitamin E might be potential future supportive treatments for LAMA2-CMD as they improve numerous pathological hallmarks of LAMA2-CMD.

17.
J Neurosci ; 28(42): 10567-75, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923033

RESUMEN

Walker-Warburg syndrome (WWS) is a severe congenital disease that is characterized by brain and eye malformations and lethality during the first year of life. Genetic mutations have been identified in a subset of WWS patients, but a majority of clinical cases have unknown etiologies. POMT1 and POMT2, two of the causative genes, form an active enzyme complex in the posttranslational biosynthetic pathway of dystroglycan. Deletion of either Pomt1 or the dystroglycan gene causes early embryonic lethality in mice. Here we report that mice with epiblast-specific loss of dystroglycan develop brain and eye defects that broadly resemble the clinical spectrum of the human disease, including aberrant neuron migration, hydrocephalus, and malformations of the anterior and posterior chambers of the eye. Breaches of basement membranes coincide with the pathology, revealing an important function for dystroglycan in the morphogenesis of the brain and eye. These findings demonstrate the central role of dystroglycan in WWS and suggest that novel defects in posttranslational processing or mutations of the dystroglycan gene itself may underlie cases in which no causative mutation has been found.


Asunto(s)
Encéfalo/anomalías , Encéfalo/metabolismo , Distroglicanos/deficiencia , Anomalías del Ojo/metabolismo , Estratos Germinativos/anomalías , Estratos Germinativos/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Encéfalo/patología , Distroglicanos/genética , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Estratos Germinativos/patología , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Lactante , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Síndrome
18.
Cell Tissue Res ; 338(1): 129-37, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19657675

RESUMEN

The heterotrimeric basement membrane protein laminin-111 is essential for early mouse embryogenesis. Its beta1 and gamma1 chains are crucial for endoderm differentiation and for the formation of basement membranes, whereas alpha1 chain null mice only lack the extraembryonic Reichert's membrane. Nevertheless, mice deficient in the cell-binding alpha1 globular domains 4-5 (LG4-5) have a more severe phenotype than animals devoid of the whole alpha1 chain, as these domains are required for the formation of a polarized ectoderm. However, the influence of the alpha1LG4-5 domains on endoderm differentiation is unclear. We have used microarray analysis to compare the expression profiles of normal and alpha1LG4-5-deficient embryoid bodies and show that genes encoding secreted plasma proteins and proteins involved in endocytosis are reduced in alpha1LG4-5-deficient embryoid bodies, indicating incomplete differentiation of the visceral endoderm. Moreover, mice lacking alpha1LG4-5 display endoderm disorganization and a defective expression of the endoderm marker Dab2. We hypothesize that alpha1LG4-5 domains provide an autocrine signal necessary for the complete differentiation of a functional visceral endoderm and vital signals for the polarization of the epiblast.


Asunto(s)
Diferenciación Celular/fisiología , Endodermo/fisiología , Laminina/química , Laminina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Endodermo/citología , Femenino , Perfilación de la Expresión Génica , Laminina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
19.
Int J Dev Biol ; 52(8): 1119-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18956345

RESUMEN

We have recently identified 1110032E23Rik as a down-regulated target gene in Fgf receptor-signalling-deficient mouse embryoid bodies. Here, we present the expression pattern of this novel gene, designated Ened (Expressed in Nerve and Epithelium during Development), in mouse and Xenopus laevis embryos. Murine Ened transcripts were first seen at E9.5 in the heart and the gastrointestinal tract. At later stages of gestation, expression could be found in the floor plate, peripheral nervous system, lens epithelium, skin, midline dorsal aorta, lung, kidney and testis. In Xenopus, the expression of the Ened orthologue displayed common RNA distribution in several ectodermal and mesodermal tissues, but also distinct expression in locations including the brain, notochord and blood islands. We suggest that Ened might be a novel target gene of the Fgfr signalling pathway during embryonic development, and that its expression could be modulated by the basement membrane component laminin-111.


Asunto(s)
Desarrollo Embrionario/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Epitelio/embriología , Epitelio/metabolismo , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Masculino , Ratones , Nervios Periféricos/embriología , Nervios Periféricos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Proteínas de Xenopus/genética
20.
Sci Rep ; 9(1): 14324, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586140

RESUMEN

Deficiency of laminin α2 chain leads to a severe form of congenital muscular dystrophy (LAMA2-CMD), and dystrophic symptoms progress rapidly in early childhood. Currently, there is no treatment for this detrimental disorder. Development of therapies is largely hindered by lack of understanding of mechanisms involved in the disease initiation and progress, both in patients but also in mouse models that are commonly used in the preclinical setup. Here, we unveil the first pathogenic events and characterise the disease development in a mouse model for LAMA2-CMD (dy3K/dy3K), by analysing muscles at perinatal, neonatal and postnatal stages. We found that apoptotic muscle fibres were present as early as postnatal day 1. Other typical dystrophic hallmarks (muscle degeneration, inflammation, and extensive production of the extracellular matrix proteins) were clearly evident already at postnatal day 4, and the highest degree of muscle deterioration was reached by day 7. Interestingly, the severe phenotype of limb muscles partially recovered on days 14 and 21, despite worsening of the general condition of the dy3K/dy3K mouse by that age. We found that masticatory muscles were severely affected in dy3K/dy3K mice and this may be an underlying cause of their malnutrition, which contributes to death around day 21. We also showed that several signalling pathways were affected already in 1-day-old dy3K/dy3K muscle. Therapeutic tests in the dy3K/dy3K mouse model should therefore be initiated shortly after birth, but should also take into account timing and correlation between regenerative and pathogenic events.


Asunto(s)
Laminina/deficiencia , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/fisiopatología , Distrofias Musculares/fisiopatología , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Laminina/genética , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA