Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Rev Genet ; 25(9): 658-670, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38649458

RESUMEN

Genome sequences largely determine the biology and encode the history of an organism, and de novo assembly - the process of reconstructing the genome sequence of an organism from sequencing reads - has been a central problem in bioinformatics for four decades. Until recently, genomes were typically assembled into fragments of a few megabases at best, but now technological advances in long-read sequencing enable the near-complete assembly of each chromosome - also known as telomere-to-telomere assembly - for many organisms. Here, we review recent progress on assembly algorithms and protocols, with a focus on how to derive near-telomere-to-telomere assemblies. We also discuss the additional developments that will be required to resolve remaining assembly gaps and to assemble non-diploid genomes.


Asunto(s)
Telómero , Telómero/genética , Humanos , Animales , Algoritmos , Genoma , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos
2.
Nature ; 625(7994): 312-320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200293

RESUMEN

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Asunto(s)
Asiático , Pueblo Europeo , Genoma Humano , Selección Genética , Humanos , Afecto , Agricultura/historia , Alelos , Enfermedad de Alzheimer/genética , Asia/etnología , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnología , Pueblo Europeo/genética , Agricultores/historia , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Historia Antigua , Migración Humana , Caza/historia , Familia de Multigenes/genética , Fenotipo , Biobanco del Reino Unido , Herencia Multifactorial/genética
3.
PLoS Genet ; 20(7): e1011318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024186

RESUMEN

Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.


Asunto(s)
Mariposas Diurnas , Evolución Molecular , Cromosomas Sexuales , Animales , Mariposas Diurnas/genética , Cromosomas Sexuales/genética , Femenino , Masculino , Filogenia , Genómica/métodos , Sintenía , Cromosomas de Insectos/genética , Genoma de los Insectos
4.
Mob DNA ; 15(1): 13, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926873

RESUMEN

BACKGROUND: Transposable Elements (TEs) are segments of DNA, typically a few hundred base pairs up to several tens of thousands bases long, that have the ability to generate new copies of themselves in the genome. Most existing methods used to identify TEs in a newly sequenced genome are based on their repetitive character, together with detection based on homology and structural features. As new high quality assemblies become more common, including the availability of multiple independent assemblies from the same species, an alternative strategy for identification of TE families becomes possible in which we focus on the polymorphism at insertion sites caused by TE mobility. RESULTS: We develop the idea of using the structural polymorphisms found in pangenomes to create a library of the TE families recently active in a species, or in a closely related group of species. We present a tool, pantera, that achieves this task, and illustrate its use both on species with well-curated libraries, and on new assemblies. CONCLUSIONS: Our results show that pantera is sensitive and accurate, tending to correctly identify complete elements with precise boundaries, and is particularly well suited to detect larger, low copy number TEs that are often undetected with existing de novo methods.

5.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352436

RESUMEN

Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.

6.
bioRxiv ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39005338

RESUMEN

Meiotic recombination is a fundamental process that generates genetic diversity by creating new combinations of existing alleles. Although human crossovers have been studied at the pedigree, population and single-cell level, the more frequent non-crossover events that lead to gene conversion are harder to study, particularly at the individual level. Here we show that single high-fidelity long sequencing reads from sperm can capture both crossovers and non-crossovers, allowing effectively arbitrary sample sizes for analysis from one male. Using fifteen sperm samples from thirteen donors we demonstrate variation between and within donors for the rates of different types of recombination. Intriguingly, we observe a tendency for non-crossover gene conversions to occur upstream of nearby PRDM9 binding sites, whereas crossover locations have a slight downstream bias. We further provide evidence for two distinct non-crossover processes. One gives rise to the vast majority of non-crossovers with mean conversion tract length under 50bp, which we suggest is an outcome of standard PRDM9-induced meiotic recombination. In contrast ~2% of non-crossovers have much longer mean tract length, and potentially originate from the same process as complex events with more than two haplotype switches, which is not associated with PRDM9 binding sites and is also seen in somatic cells.

7.
Cell Genom ; 4(3): 100507, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38417441

RESUMEN

The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.


Asunto(s)
Árabes , ADN Antiguo , Genética de Población , Genoma Humano , Humanos , Árabes/genética , Bahrein
8.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617250

RESUMEN

East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.

9.
Wellcome Open Res ; 8: 401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38680652

RESUMEN

Sequences derived from circular DNA molecules (i.e. most bacterial, viral and plastid genomes) are expected to be linearised and rotated to a common start position for most downstream analyses including alignment. Despite this being a common and straightforward task, available software is either limited to a small number of input sequences, lacks the option to specify a custom anchor string, or requires a commercial license. Here, we present rotate, a simple, open source command line program written in C with no external dependencies, which can rotate a set of input sequences to a custom anchor string (allowing for a specified number of mismatches), or offset the input sequences to the desired position. The combination of both functionalities allows the rotation of all input sequences to any desired starting position, enabling downstream analysis. rotate is extremely fast and scales linearly with the number of input sequences, taking only seconds to rotate over a thousand mitochondrial sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA