Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Sci Technol ; 57(48): 19979-19989, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37988584

RESUMEN

This work, for the first time, assessed the secondary aerosol formation from both in-use diesel and natural gas heavy-duty vehicles of different vocations when they were operated on a chassis dynamometer while the vehicles were exercised on different driving cycles. Testing was performed on natural gas vehicles equipped with three-way catalysts (TWCs) and diesel trucks equipped with diesel oxidation catalysts, diesel particulate filters, and selective catalytic reduction systems. Secondary aerosol was measured after introducing dilute exhaust into a 30 m3 environmental chamber. Particulate matter ranged from 0.18 to 0.53 mg/mile for the diesel vehicles vs 1.4-85 mg/mile for the natural gas vehicles, total particle number ranged from 4.01 × 1012 to 3.61 × 1013 for the diesel vehicles vs 5.68 × 1012-2.75 × 1015 for the natural gas vehicles, and nonmethane organic gas emissions ranged from 0.032 to 0.05 mg/mile for the diesel vehicles vs 0.012-1.35 mg/mile for the natural gas vehicles. Ammonia formation was favored in the TWC and was found in higher concentrations for the natural gas vehicles (ranged from ∼0 to 1.75 g/mile) than diesel vehicles (ranged from ∼0 to 0.4 g/mile), leading to substantial secondary ammonium nitrate formation (ranging from 8.5 to 98.8 mg/mile for the natural gas vehicles). For the diesel vehicles, one had a secondary ammonium nitrate of 18.5 mg/mile, while the other showed essentially no secondary ammonium nitrate formation. The advanced aftertreatment controls in diesel vehicles resulted in almost negligible secondary organic aerosol (SOA) formation (ranging from 0.046 to 2.04 mg/mile), while the natural gas vehicles led to elevated SOA formation that was likely sourced from the engine lubricating oil (ranging from 3.11 to 39.7 mg/mile). For two natural gas vehicles, the contribution of lightly oxidized lubricating oil in the primary organic aerosol was dominant (as shown in the mass spectra analysis), leading to enhanced SOA mass. Heavily oxidized lubricating oil was also observed to contribute to the SOA formation for other natural gas vehicles.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Gas Natural/análisis , Emisiones de Vehículos/análisis , Vehículos a Motor , Aerosoles/análisis , Gasolina/análisis
2.
Environ Sci Technol ; 53(9): 5504-5511, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30995015

RESUMEN

Real-world nitrogen oxides (NO x) emissions were estimated using on-board sensor readings from 72 heavy-duty diesel vehicles (HDDVs) equipped with a Selective Catalytic Reduction (SCR) system in California. The results showed that there were large differences between in-use and certification NO x emissions, with 12 HDDVs emitting more than three times the standard during hot-running and idling operations in the real world. The overall NO x conversion efficiencies of the SCR system on many vehicles were well below the 90% threshold that is expected for an efficient SCR system, even when the SCR system was above the optimum operating temperature threshold of 250 °C. This could potentially be associated with SCR catalyst deterioration on some engines. The Not-to-Exceed (NTE) requirements currently used by the heavy-duty in-use compliance program were evaluated using on-board NO x sensor data. Valid NTE events covered only 4.2-16.4% of the engine operation and 6.6-34.6% of the estimated NO x emissions. This work shows that low cost on-board NO x sensors are a convenient tool to monitor in-use NO x emissions in real-time, evaluate the SCR system performance, and identify vehicle operating modes with high NO x emissions. This information can inform certification and compliance programs to ensure low in-use NO x emissions.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , California , Catálisis , Vehículos a Motor , Óxidos de Nitrógeno
3.
Environ Sci Technol ; 53(6): 3037-3047, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30794395

RESUMEN

The effects of photochemical aging on exhaust emissions from two light-duty vehicles with gasoline direct injection (GDI) engines equipped with and without catalyzed gasoline particle filters (GPFs) were investigated using a mobile environmental chamber. Both vehicles with and without the GPFs were exercised over the LA92 drive cycle using a chassis dynamometer. Diluted exhaust emissions from the entire LA92 cycle were introduced to the mobile chamber and subsequently photochemically reacted. It was found that the addition of catalyzed GPFs will significantly reduce tailpipe particulate emissions and also provide benefits in gaseous emissions, including nonmethane hydrocarbons (NMHC). Tailpipe emissions composition showed important changes with the use of GPFs by practically eliminating black carbon and increasing the fractional contribution of organic mass. Production of secondary organic aerosol (SOA) was reduced with GPF addition, but was also dependent on engine design which determined the amount of SOA precursors at the tailpipe. Our findings indicate that SOA production from GDI vehicles will be reduced with the application of catalyzed GPFs through the mitigation of reactive hydrocarbon precursors.


Asunto(s)
Gasolina , Emisiones de Vehículos , Aerosoles , Catálisis , Vehículos a Motor , Hollín
4.
Environ Sci Technol ; 52(5): 3275-3284, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29446927

RESUMEN

We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO2) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , California , Gasolina , Material Particulado , Emisiones de Vehículos
5.
Environ Sci Technol ; 51(3): 1580-1586, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28045504

RESUMEN

The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.


Asunto(s)
Biocombustibles , Gasolina , Aerosoles , Contaminantes Atmosféricos , Emisiones de Vehículos , Humectabilidad
6.
Environ Sci Technol ; 49(17): 10682-91, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26244891

RESUMEN

Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.


Asunto(s)
Gasolina/análisis , Hidrocarburos Aromáticos/análisis , Vehículos a Motor , Octanos/química , Material Particulado/análisis , Emisiones de Vehículos/análisis , Parafina/análisis , Solubilidad , Hollín/análisis , Agua/química , Humectabilidad
7.
Environ Sci Technol ; 49(11): 7021-31, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25938171

RESUMEN

We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Gasolina/análisis , Hidrocarburos Aromáticos/análisis , Vehículos a Motor , Material Particulado/análisis , Emisiones de Vehículos/análisis , Carbono/análisis , Monóxido de Carbono/análisis , Gasolina/economía , Metano/análisis , Peso Molecular , Óxidos de Nitrógeno/análisis , Hollín/análisis
8.
Environ Sci Technol ; 48(23): 14016-24, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25375668

RESUMEN

This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.


Asunto(s)
Contaminantes Atmosféricos/química , Butanoles/química , Etanol/química , Gasolina/análisis , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , Conservación de los Recursos Energéticos , Efecto Invernadero , Hidrocarburos/análisis , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Hollín
9.
Environ Sci Technol ; 48(3): 1779-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24328166

RESUMEN

It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Conducción de Automóvil , Peso Molecular , Tamaño de la Partícula
10.
J Air Waste Manag Assoc ; 64(6): 670-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039201

RESUMEN

UNLABELLED: Continuous monitoring of exhaust flue gas has become a common practice in power plants in response to Federal Mercury and Air Toxics Standards (MATS) standards. Under the current rules, hydrochloric acid (HCl) is not continuously measured at most plants; however, MATS standards have been proposed for HCl, and tunable diode laser (TDL) absorption spectroscopy is one method that can be used to measure HCl continuously. The focus of this work is on the evaluation and verification of the operation performance of an HCL TDL over a range of real-world operating environments. The testing was conducted at the University of California at Riverside (UCR) spectroscopy evaluation laboratory. Laboratory tests were conducted at three separate temperatures, 25 degrees C, 100 degrees C, and 200 degrees C, and two distinct moisture levels for the enhanced temperatures, 0%, (2 tests) and 4%, over a concentration range from 0 ppmv to 25 ppmv-m at each of the elevated temperatures. The results showed good instrument accuracy as afunction of changing temperature and moisture. Data analysis showed that the average percentage difference between the ammonia concentration and the calibration source was 3.33% for varying moisture from 0% to 4% and 2.69%for varying temperature from 25 to 100/200 degrees C. An HCl absorption line of 1.742 microm was selected for by the manufacturer for this instrument. The Hi Tran database indicated that CO2 is probably the only major interferent, although the CO2 absorption is very weak at that wavelength. Interference tests for NO, CO, SO2, NH3, and CO2 for a range of concentrations typical of flue gasses in coal-fired power plants did not show any interference with TDL HCl measurements at 1.742 microm. For these interference tests, CO2 was tested at a concentration of 11.9% concentration in N2 for these tests. Average precision over the entire range for all 10 tests is 3.12%. IMPLICATIONS: The focus of this study was.an evaluation of the operation performance of a tunable diode laser (TDL) for the measurement of hydrochloric acid (HCl) over a range of real-world operating environments. The results showed good instrument accuracy as a function of changing temperature from 25 degrees C to 200 degrees C and moisture from 0% to 4%. Such as an instrument could be used for continuous monitoring of exhaust flue gas in power plants once the Federal Mercury and Air Toxics Standards (MATS) standards have been fully implemented.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Ácido Clorhídrico/análisis , Emisiones de Vehículos/análisis , Precisión de la Medición Dimensional , Equipos y Suministros , Humedad , Láseres de Semiconductores , Centrales Eléctricas , Espectrofotometría Atómica , Temperatura , Estados Unidos
11.
Environ Sci Technol ; 46(16): 9163-73, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22788711

RESUMEN

The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.


Asunto(s)
Biocombustibles , Óxidos de Nitrógeno/química , California
12.
Sci Total Environ ; 822: 153583, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35114249

RESUMEN

This manuscript contains an assessment of tailpipe emissions and secondary aerosol formation from two in-use heavy-duty diesel vehicles (HDDVs) with different aftertreatment systems when operated with ultra-low sulfur diesel (ULSD) and hydrogenated vegetable oil (HVO) operated on a chassis dynamometer. Secondary aerosol formation was characterized from the HDDVs' diluted exhaust collected and photochemically aged in a 30 m3 mobile atmospheric chamber. Primary nitrogen oxide (NOx) and particulate matter (PM) emissions were reduced for both vehicles operating on HVO compared to ULSD. For the vehicles with no selective catalytic reduction (SCR) system, secondary aerosol production was ~2 times higher for ULSD compared to HVO. The composition of primary aerosol was exclusively organic for the vehicle with no SCR system regardless of fuel type. The composition of secondary aerosol with HVO was primarily organic for the vehicle equipped with diesel particulate filter (DPF)/SCR system; however, when the same vehicle was tested with ULSD, the composition was ~20% organic (80% ammonium nitrate). The results reported here revealed that the in-use vehicle with no-SCR had a non-functioning DPF leading to dramatic increases in secondary aerosol formation when compared to the DPF/SCR vehicle. The high-resolution mass spectra analysis showed that the POA of HVO combustion contained relatively lower portion of CH class compounds (or higher CHO class compounds) compared to ULSD under the similar conditions, which can be rationalized by the higher cetane number of HVO. Substantial growth of oxidized organic aerosol (such as m/z 44 peak) were observed after 5 h of photochemical oxidation, consistent with aged organic aerosols present in the atmosphere. The C4H9+ fragment at m/z 57 peak was used as a tracer to calculate evolution of secondary organic aerosol formation.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Vehículos a Motor , Material Particulado/análisis , Aceites de Plantas/análisis , Emisiones de Vehículos/análisis
13.
Environ Sci Technol ; 45(14): 6073-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21662983

RESUMEN

Heavy duty emissions regulations have recently expanded from the laboratory to include in-use requirements. This paradigm shift to in-use testing has forced the development of portable emissions measurement systems (PEMS) for particulate matter (PM). These PM measurements are not trivial for laboratory work, and are even more complex for in-use testing. This study evaluates five PM PEMS in comparison to UCR's mobile reference laboratory under in-use conditions. Three on-highway, heavy-duty trucks were selected to provide PM emissions levels from 0.1 to 0.0003 g/hp-h, with varying compositions of elemental carbon (EC), organic carbon (OC), and sulfate. The on-road driving courses included segments near sea level, at elevations up to 1500 m, and coastal and desert regions. The photoacoustic measurement PEMS performed best for the non-after treatment system (ATS)-equipped engine, where the PM was mostly EC, with a linear regression slope of 0.91 and an R(2) of 0.95. The PEMS did not perform as well for the 2007 modified ATS equipped engines. The best performing PEMS showed a slope of 0.16 for the ATS-equipped engine with predominantly sulfate emissions and 0.89 for the ATS-equipped engine with predominantly OC emissions, with the next best slope at 0.45 for the predominantly OC engine.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Gasolina , Vehículos a Motor , Material Particulado/análisis , Emisiones de Vehículos/análisis , Carbono/análisis , Cromatografía por Intercambio Iónico , Monitoreo del Ambiente/métodos , Geografía , Modelos Lineales , Tamaño de la Partícula , Sulfatos/análisis
14.
Sci Total Environ ; 784: 147224, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33905931

RESUMEN

This study assessed the real-world nitrogen oxide (NOx) emissions from 50 heavy-duty vehicles of different vocations and engine technologies using portable emissions measurement systems (PEMS). This is one of the most comprehensive in-use emissions studies conducted to date, which played a key role in the development of CARB's (California Air Recourses Board) updated EMission FACtor (EMFAC) model, especially for natural gas vehicles. In-use emissions testing was performed on school and transit buses, refuse haulers, goods movement vehicles, and delivery vehicles while were driven over their normal operating routes in the South Coast Air Basin. Engine technologies included diesel engines with and without selective catalytic reduction (SCR) systems, compressed natural gas (CNG) engines and liquified petroleum gas (LPG) engines, and SCR-equipped diesel hybrid electric vehicles. For most vehicles, the in-use NOx emissions were higher than the certification standards for the engine. Diesel vehicles generally showed higher brake-specific NOx emissions compared to the CNG vehicles. NOx emissions were strongly dependent on the SCR temperature, with SCR temperatures below 200 °C resulting in elevate brake-specific NOx. The 0.02 g/bhp-hr certified CNG vehicles showed the largest reductions in NOx emissions. The diesel hybrid electric vehicles showed important distance-specific NOx benefits compared to the conventional diesel vehicles, but higher emissions compared to the CNG and LPG vehicles. Overall, average NOx reductions were 75%, 94%, 65%, 79%, respectively, for the 0.2 CNG, 0.02 CNG, diesel hybrid electric, and LPG vehicles compared to diesel vehicles, due in part to some diesel vehicles with particularly high emissions, indicating that the widespread implementation of advanced technology and alternative fuel vehicles could provide important NOx reductions and a path for meeting air quality targets in California and elsewhere.

15.
Environ Pollut ; 282: 117069, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33831626

RESUMEN

A comprehensive study on the effects of photochemical aging on exhaust emissions from a vehicle equipped with a gasoline direct injection engine when operated over seven different driving cycles was assessed using an oxidation flow reactor. Both primary emissions and secondary aerosol production were measured over the Federal Test Procedure (FTP), LA92, New European Driving Cycle (NEDC), US06, and the Highway Fuel Economy Test (HWFET), as well as over two real-world cycles developed by the California Department of Transportation (Caltrans) mimicking typical highway driving conditions. We showed that the emissions of primary particles were largely depended on cold-start conditions and acceleration events. Secondary organic aerosol (SOA) formation also exhibited strong dependence on the cold-start cycles and correlated well with SOA precursor emissions (i.e., non-methane hydrocarbons, NMHC) during both cold-start and hot-start cycles (correlation coefficients 0.95-0.99), with overall emissions of ∼68-94 mg SOA per g NMHC. SOA formation significantly dropped during the hot-running phases of the cycles, with simultaneous increases in nitrate and ammonium formation as a result of the higher nitrogen oxide (NOx) and ammonia emissions. Our findings suggest that more SOA will be produced during congested, slow speed, and braking events in highways.


Asunto(s)
Contaminantes Atmosféricos , Conducción de Automóvil , Aerosoles , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Oxidación-Reducción , Emisiones de Vehículos/análisis
16.
Sci Total Environ ; 737: 140333, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783873

RESUMEN

While the effects of fuel composition on primary vehicle emissions have been well studied, less is known about the effects on secondary aerosol formation and composition. The propensity of light-duty gasoline engines to form secondary aerosol and contribute to regional air quality burdens are of scientific interest. This study assessed secondary aerosol formation and composition due to photochemical aging of exhaust emissions from a light-duty vehicle equipped with gasoline direct injection (GDI) engine. The vehicle was operated on eight fuels with varying ethanol and aromatic levels. Testing was performed over the LA92 cycle using a chassis dynamometer. The aging studies were performed using a mobile environmental chamber. Diluted exhaust emissions were introduced to the mobile chamber over the course of the LA92 cycle and subsequently photochemically reacted. It was found that secondary aerosol mass exceeded the primary particulate matter (PM) emissions. Secondary aerosol was primarily composed of ammonium nitrate due to the elevated tailpipe ammonia emissions. The high aromatic fuels produced greater total carbonaceous aerosol and secondary organic aerosol (SOA) compared to the low aromatic fuels. A clear influence of ethanol for the high aromatic fuels on SOA formation was observed, with greater SOA formation for the fuels with higher ethanol contents. Our results suggest that more SOA formation is expected from current GDI vehicles when operated with gasoline fuels rich with heavier aromatics and blended with higher ethanol levels.

17.
Sci Total Environ ; 710: 136366, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-31923692

RESUMEN

This study assessed the on-road gaseous and particulate emissions from three current technology gasoline direct injection (GDI) vehicles using portable emissions measurement systems (PEMS). Two vehicles were also retrofitted with catalyzed gasoline particulate filters (GPFs). All vehicles were exercised over four routes with different topological and environmental characteristics, representing urban, rural, highway, and high-altitude driving conditions. The results showed strong reductions in particulate mass (PM), soot mass, and particle number emissions with the use of GPFs. Particle emissions were found to be highest during urban and high-altitude driving compared to highway driving. The reduction efficiency of the GPFs ranged from 44% to 99% for overall soot mass emissions. Similar efficiencies were found for particle number and PM mass emissions. In most cases, nitrogen oxide (NOx) emissions showed improvements with the catalyzed GPFs in the underfloor position with the additional catalytic volume. No significant differences were seen in carbon dioxide (CO2) and carbon monoxide (CO) emissions with the vehicles retrofitted with GPFs.

18.
Sci Total Environ ; 683: 749-761, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31150895

RESUMEN

This study assessed the gaseous and particulate emissions, as well as the toxicological properties of particulate matter (PM) from a flex fuel vehicle equipped with a wall-guided gasoline direct injection engine over triplicates cold-start and hot-start LA92 cycles. The vehicle was operated on a Tier 3 E10 fuel, an E10 fuel with higher levels of aromatics than the Tier 3 E10, an E30, and an E78 blend. Total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), particulate emissions, and gaseous toxics (of benzene, toluene, ethylbenzene, xylenes (BTEX), and 1,3-butadiene) reduced for E30 and E78 blends compared to both E10 fuels. Formaldehyde and acetaldehyde emissions substantially increased with the higher ethanol blends. The high aromatic E10 fuel increased the emissions of THC, NMHC, particulates, and BTEX compared to the Tier 3 E10 fuel and the higher ethanol blends, as well as showed higher concentrations of accumulation mode particles. The GDI PM did not exhibit any measurable mutagenicity at the PM concentrations tested. Cytotoxicity varied only within a small range and concentrations of PM, eliciting a cytotoxic response similar to those by ambient aerosol. The outcomes of our two measures of PM oxidative potential (macrophage ROS and DTT) were significantly correlated, with the E78 blend exhibiting the least oxidative potential and the E30 the greatest. Gene expression analysis at both the mRNA and protein level indicates that there is the potential for GDI PM emissions to contribute to inflammation and etiology of disease such as asthma, and in contrast to the ROS and DTT outcomes, the E78 fuel PM exhibited the greatest potential to elicit pro-inflammatory cytokine (TNFα) production. Overall, the trends in toxicity emission rates (activity/mi) across the ethanol blends was driven primarily by PM mass emission rate contrasts and only secondarily by the differences in intrinsic toxicity of the PM.


Asunto(s)
Contaminantes Atmosféricos/análisis , Etanol/análisis , Emisiones de Vehículos/análisis , Gasolina/análisis
19.
Sci Total Environ ; 650(Pt 1): 1182-1194, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308806

RESUMEN

We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.


Asunto(s)
Contaminantes Atmosféricos/análisis , Vehículos a Motor/estadística & datos numéricos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Gasolina/análisis , Material Particulado/química , Material Particulado/toxicidad
20.
Sci Total Environ ; 619-620: 765-771, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161601

RESUMEN

The regulated emissions of five 2012 and newer, low-mileage, heavy-duty Class 8 diesel trucks equipped with diesel particulate filters (DPFs) and selective catalytic reduction (SCR) systems were evaluated over test cycles representing urban, highway, and stop-and-go driving on a chassis dynamometer. NOx emissions over the Urban Dynamometer Driving Schedule (UDDS) ranged from 0.495 to 1.363g/mi (0.136 to 0.387g/bhp-hr) for four of the normal emitting trucks. For those trucks, NOx emissions were lowest over the cruise (0.068 to 0.471g/mi) and high-speed cruise (0.067 to 0.249g/mi) cycles, and highest for the creep cycle (2.131 to 9.468g/mi). A fifth truck showed an anomaly in that it had never regenerated throughout its relatively short operating lifetime due to its unusual, unladed service history. This truck exhibited NOx emissions of 3.519g/mi initially over the UDDS, with UDDS NOx emissions decreasing to 0.39g/mi after a series of parked regenerations. PM, THC, and CO emissions were found to be very low for most of the testing conditions, due to the presence of the DPF/SCR aftertreatment system, and were comparable to background levels in some cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA