Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genes Dev ; 29(2): 109-22, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25593304

RESUMEN

During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I.


Asunto(s)
Segregación Cromosómica , Meiosis/fisiología , Mitosis/fisiología , Cromátides/metabolismo , Cinetocoros/metabolismo
2.
Chromosoma ; 128(3): 331-354, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31037469

RESUMEN

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell ; 40(4): 632-44, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21055984

RESUMEN

Budding yeast Mms22 is required for homologous recombination (HR)-mediated repair of stalled or broken DNA replication forks. Here we identify a human Mms22-like protein (MMS22L) and an MMS22L-interacting protein, NFκBIL2/TONSL. Depletion of MMS22L or TONSL from human cells causes a high level of double-strand breaks (DSBs) during DNA replication. Both proteins accumulate at stressed replication forks, and depletion of MMS22L or TONSL from cells causes hypersensitivity to agents that cause S phase-associated DSBs, such as topoisomerase (TOP) inhibitors. In this light, MMS22L and TONSL are required for the HR-mediated repair of replication fork-associated DSBs. In cells depleted of either protein, DSBs induced by the TOP1 inhibitor camptothecin are resected normally, but the loading of the RAD51 recombinase is defective. Therefore, MMS22L and TONSL are required for the maintenance of genome stability when unscheduled DSBs occur in the vicinity of DNA replication forks.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Supervivencia Celular , Biología Computacional , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN , Resistencia a Medicamentos , Humanos , Modelos Biológicos , Chaperonas Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , FN-kappa B/química , Proteínas Nucleares/química , Unión Proteica , Recombinasa Rad51/metabolismo , Fase S
4.
Curr Biol ; 31(2): 283-296.e7, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157029

RESUMEN

Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Meiosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Segregación Cromosómica , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/aislamiento & purificación , Mitosis , Proteómica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
5.
DNA Repair (Amst) ; 7(5): 811-8, 2008 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-18321796

RESUMEN

Yeast cells lacking MMS22 or MMS1 are hypersensitive to agents that perturb replisome progression but the cellular functions of these genes are unknown. In this study we investigate the involvement of budding yeast MMS22 and MMS1 in homologous recombination (HR). Recombination between sister chromatids or between homologous chromosomes induced by agents that block replisomes was severely defective in cells lacking MMS22 or MMS1. In contrast, HR induced by double-strand breaks was not affected by the absence of these genes. Major defects in MMS-induced HR were also observed in cells lacking the cullin RTT101, the histone acetyltransferase RTT109 and in cells lacking the histone chaperone ASF1, all of which interact genetically with MMS22 and MMS1. Finally, we show that cells lacking either MMS22 or MMS1 are defective in recovery from MMS-induced replisome stalling. These results identify Mms22 and Mms1 as S-phase specific recombination-promoting factors.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Complejos Multienzimáticos/antagonistas & inhibidores , Inhibidores de la Síntesis del Ácido Nucleico , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Metilmetanosulfonato/farmacología , Complejos Multienzimáticos/metabolismo , Mutágenos/farmacología , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Saccharomyces cerevisiae/efectos de los fármacos
6.
Science ; 346(6206): 248-51, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25213378

RESUMEN

Production of healthy gametes requires a reductional meiosis I division in which replicated sister chromatids comigrate, rather than separate as in mitosis or meiosis II. Fusion of sister kinetochores during meiosis I may underlie sister chromatid comigration in diverse organisms, but direct evidence for such fusion has been lacking. We used laser trapping and quantitative fluorescence microscopy to study native kinetochore particles isolated from yeast. Meiosis I kinetochores formed stronger attachments and carried more microtubule-binding elements than kinetochores isolated from cells in mitosis or meiosis II. The meiosis I-specific monopolin complex was both necessary and sufficient to drive these modifications. Thus, kinetochore fusion directs sister chromatid comigration, a conserved feature of meiosis that is fundamental to Mendelian inheritance.


Asunto(s)
Cinetocoros/metabolismo , Meiosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Microscopía Fluorescente , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pinzas Ópticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell Biol ; 28(16): 4915-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18541663

RESUMEN

Set2 (KMT3)-dependent methylation (me) of histone H3 at lysine 36 (H3K36) promotes deacetylation of transcribed chromatin and represses cryptic promoters within genes. Although Set2 is the only methyltransferase (KMTase) for H3K36 in yeast, it is not known if Set2 is regulated or whether the different methylation states at H3K36 are functionally distinct. Here we show that the N-terminal 261 residues of Set2 (Set2(1-261)), containing the SET KMTase domain, are sufficient for H3K36me2, histone deacetylation, and repression of cryptic promoters at STE11. Set2-catalyzed H3K36me2 does not require either Ctk1-dependent phosphorylation of RNA polymerase II (RNAPII) or the presence of the phospho-C-terminal domain (CTD) interaction (SRI) domain of Set2. This finding is consistent with a known correlation between H3K36me2 and whether a gene is on or off, but not the level of activity of a gene. By contrast, H3K36me3 requires Spt6, proline 38 on histone H3 (H3P38), the CTD of RNAPII, Ctk1, and the C-terminal SRI domain of Set2. We suggest that the C-terminal region of Set2, in conjunction with the phosphorylated CTD of RNAPII, influences the KMTase activity to promote H3K36me3 during transcription elongation.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Chaperonas de Histonas , Metilación , Proteínas Nucleares/química , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional
8.
Mol Biol Evol ; 24(12): 2802-15, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17921485

RESUMEN

In the Neisseria spp., natural competence for transformation and homologous recombination generate antigenic variants through creation of mosaic genes (such as opas) and through recombination with silent cassettes (such as pilE/pilS) and gene-complement diversity through the horizontal exchange of whole genes or groups of genes, in minimal mobile elements (MMEs). An MME is a region encompassing 2 conserved genes between which different whole-gene cassettes are found in different strains, which are chromosomally incorporated solely through the action of homologous recombination. Comparative analyses of the neisserial genome sequences identified 39 potential MME sites, the contents of which were investigated in 11 neisserial strains. One hundred and eight different MME regions were identified, 20 of which contain novel sequences and these contain 12 newly identified neisserial coding sequences. Neisserial uptake signal sequences are associated with 38 of the 40 MMEs studied. In some sites, divergent dinucleotide signatures of the sequences between the flanking genes suggest relatively recent horizontal acquisition of some cassettes. The neisserial MMEs were used to interrogate all of the other available bacterial genome sequences, revealing frequent conservation of the flanking genes combined with the presence of different gene cassettes between them. In some cases, these sites can definitively be classified as MMEs in these other genera. These findings provide additional evidence for the MME model, indicate that MME-directed investigations are a good basis for the identification of novel strain-specific genes and differences within bacterial populations and demonstrate that these elements are probably ubiquitously involved in genetic exchange, particularly in naturally competent bacteria.


Asunto(s)
Bacterias/genética , Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas/genética , Neisseria/genética , ADN Intergénico/genética , Genes Bacterianos , Genoma Bacteriano , Modelos Genéticos , Datos de Secuencia Molecular , Señales de Clasificación de Proteína , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA