Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547604

RESUMEN

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Asunto(s)
Burkholderia , Humanos , Nitrilos/química , Amidohidrolasas/metabolismo , Catecoles , Biodegradación Ambiental
2.
Biochem Biophys Res Commun ; 663: 78-86, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119769

RESUMEN

The members of the genus Pseudomonas can secrete a wide range of ribosomally encoded antagonistic peptides and proteins, ranging from small microcins to large tailocins. In this study, a drug-sensitive Pseudomonas aeruginosa strain isolated from a high-altitude virgin soil sample showed a broad range of antibacterial activity against Gram-positive and Gram-negative bacteria. The antimicrobial compound, purified by affinity chromatography, ultrafiltration, and high-performance liquid chromatography, showed a molecular weight (M + H)+ of 494.7667 daltons, as revealed by ESI-MS analysis. The MS-MS analysis divulged the compound as an antimicrobial pentapeptide with the sequence NH2-Thr-Leu-Ser-Ala-Cys-COOH (TLSAC) and was further verified by evaluating the antimicrobial activity of the chemically synthesized pentapeptide. The extracellularly released pentapeptide, which is relatively hydrophobic in nature, is encoded in a symporter protein, as appraised from the whole genome sequence analysis of strain PAST18. The influence of different environmental factors was examined to determine the stability of the antimicrobial peptide (AMP), which was also assessed for several other biological functions, including antibiofilm activity. Further, the antibacterial mechanism of the AMP was evaluated by a permeability assay. Overall, the characterised pentapeptide, as revealed in this study, may find use as a potential biocontrol agent in various commercial applications.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/química , Pseudomonas aeruginosa/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
3.
Microbiology (Reading) ; 169(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384374

RESUMEN

Bacterial strain GONU, belonging to the genus Gordonia, was isolated from a municipal waste-contaminated soil sample and was capable of utilizing an array of endocrine-disrupting phthalate diesters, including di-n-octyl phthalate (DnOP) and its isomer di(2-ethylhexyl) phthalate (DEHP), as the sole carbon and energy sources. The biochemical pathways of the degradation of DnOP and DEHP were evaluated in strain GONU by using a combination of various chromatographic, spectrometric and enzymatic analyses. Further, the upregulation of three different esterases (estG2, estG3 and estG5), a phthalic acid (PA)-metabolizing pht operon and a protocatechuic acid (PCA)-metabolizing pca operon were revealed based on de novo whole genome sequence information and substrate-induced protein profiling by LC-ESI-MS/MS analysis followed by differential gene expression by real-time PCR. Subsequently, functional characterization of the differentially upregulated esterases on the inducible hydrolytic metabolism of DnOP and DEHP revealed that EstG5 is involved in the hydrolysis of DnOP to PA, whereas EstG2 and EstG3 are involved in the metabolism of DEHP to PA. Finally, gene knockout experiments further validated the role of EstG2 and EstG5, and the present study deciphered the inducible regulation of the specific genes and operons in the assimilation of DOP isomers.


Asunto(s)
Dietilhexil Ftalato , Bacteria Gordonia , Espectrometría de Masas en Tándem , Bacteria Gordonia/genética , Esterasas
4.
Microb Cell Fact ; 22(1): 82, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37101185

RESUMEN

BACKGROUND: Di(2-ethylhexyl) phthalate (DEHP) is a widely detected plasticizer and a priority pollutant of utmost concern for its adverse impact on humans, wildlife and the environment. To eliminate such toxic burden, biological processes are the most promising ways to combat rampant environmental insults under eco-friendly conditions. The present study investigated the biochemical and molecular assessment of the catabolic potential of Mycolicibacterium sp. strain MBM in the assimilation of estrogenic DEHP. RESULTS: A detailed biochemical study revealed an initial hydrolytic pathway of degradation for DEHP followed by the assimilation of hydrolyzed phthalic acid and 2-ethylhexanol to TCA cycle intermediates. Besides the inducible nature of DEHP-catabolic enzymes, strain MBM can efficiently utilize various low- and high-molecular-weight phthalate diesters and can grow under moderately halotolerant conditions. Whole genome sequence analysis exhibited a genome size of 6.2 Mb with a GC content of 66.51% containing 6,878 coding sequences, including multiple genes, annotated as relevant to the catabolism of phthalic acid esters (PAEs). Substantiating the annotated genes through transcriptome assessment followed by RT-qPCR analysis, the possible roles of upregulated genes/gene clusters in the metabolism of DEHP were revealed, reinforcing the biochemical pathway of degradation at the molecular level. CONCLUSIONS: A detailed co-relation of biochemical, genomic, transcriptomic and RT-qPCR analyses highlights the PAE-degrading catabolic machineries in strain MBM. Further, due to functional attributes in the salinity range of both freshwater and seawater, strain MBM may find use as a suitable candidate in the bioremediation of PAEs.


Asunto(s)
Dietilhexil Ftalato , Mycobacteriaceae , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/análisis , Dietilhexil Ftalato/metabolismo , Ácidos Ftálicos/metabolismo , Biodegradación Ambiental , Mycobacteriaceae/metabolismo , Ésteres/metabolismo
5.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37699793

RESUMEN

AIMS: The bacterial communities associated with the gastrointestinal (GI) tract are primarily involved in digestion, physiology, and the immune response against pathogenic bacteria for the overall development and health of the host. Hilsa shad (Tenualosa ilisha), a tropical anadromous fish, found predominantly in Bangladesh and India, has so far been poorly investigated for its gut bacterial communities. In this study, both culture-based and metagenomic approaches were used to detect intestinal isolates of hilsa, captured from both freshwater and seawater to investigate the community structure of intestinal microbiota. METHODS AND RESULTS: Culture-dependent approach allowed to isolate a total of 23 distinct bacterial species comprising 16 Gram-negative, and 7 Gram-positive isolates, where Proteobacteria and Firmicutes were identified as the two most dominant phyla. While metagenomic approach explored a wide range of important GI bacteria, primarily dominated by Proteobacteria, Firmicutes, and Bacteroidetes, with Proteobacteria and Firmicutes, being the most abundant in freshwater and seawater samples, respectively. CONCLUSIONS: A combination of these approaches provided the differential GI-associated bacterial diversity in freshwater and seawater hilsa with the prediction of overall functional potential. IMPACT STATEMENT: The study explored the diversity of gut microbiota in hilsa, one of the most preferred nutritious dietary fish, captured from freshwater and seawater habitats, which may encourage to comprehend the composition of the gut microbiome in relation to the migratory behavior and polyunsaturated fatty acid profile of anadromous fish in general.


Asunto(s)
Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Peces , Firmicutes/genética , Bacteroidetes/genética , Bangladesh , Proteobacteria/genética
6.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36724246

RESUMEN

COVID-19, which is caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), is the deadliest outbreak of this millennium. Despite adopting several precautionary strategies and guidelines, COVID-19 has spread rapidly, and the number of cases is still in escalation across the world. The various immune-boosting drugs with severe side effects and the vaccines approved after negotiated clinical trials have been struggling to cope with the emergence of new variants of the virus. Nevertheless, given a large number of asymptomatic cases, a high magnitude of recovery rate, and a relatively higher prevalence of morbidity and mortality among immunologically compromised individuals, those affected by an illness, and the elderly, it appears that a healthy microbiome and the associated immune responses are the key factors for survival. Incidentally, the consumption of traditionally popular and nutritious fermented foods, which are composed of biologically functional ingredients and several health-promoting probiotics, offers promising health benefits through the improvement of the immune system in general. Given the progress in functional food research, it has become crucial to understand the impact of a healthy microbiome and the immunomodulatory roles of fermented foods on the battles to combat infectious diseases. Based on the evidence of the impact of probiotics-based fermented foods, the beneficial roles of a few frequently consumed fermented foods in the management of various infections have been resolutely discussed in the present study, with a focus on their antagonistic and immune-modulating effects in the context of the current COVID-19 pandemic.


Asunto(s)
Antiinfecciosos , COVID-19 , Alimentos Fermentados , Humanos , Anciano , SARS-CoV-2 , Pandemias/prevención & control
7.
Curr Microbiol ; 78(3): 1006-1016, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33527166

RESUMEN

The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) are perceived as a serious public-health threat world-wide. Despite sporadic reports, no systemic study has been carried out on CRE in companion animals in Indian subcontinent. In total, 237 canine specimens collected from five veterinary polyclinics in and around Kolkata were analyzed for isolation, antimicrobial resistance profiling and molecular characterization of carbapenem-resistant (CR) E. coli. Of the 29 CR isolates, 19 were identified as metallo-ß-lactamase producers (MP-CRE) and 10 as metallo-ß-lactamase non-producers (MNP-CRE). Eleven of them were extended spectrum ß-lactamase and/or AmpC type ß-lactamase producers and harboured fluoroquinolone-, tetracycline-, sulfonamide- and aminoglycoside-resistant genes. Beside uropathogenic virulence determinants, they carried the adhesion factors mediating biofilm production which was remarkably higher in 6 MP-CRE and one MNP-CRE isolates. Although the CRE were of diverse origin including the healthy and the diseased dogs, these were more frequently isolated from canine pyometra. The MP-CRE harboured plasmids of IncF and IncA/C types. Phylo-type B1 was observed in 38% of the CR isolates, followed by A0 in 31% and rest were attributed to A1 and D1. The Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) revealed that these isolates were genetically diverse and constituted of a heterogenous population. Detection of CRE in pet dogs despite the fact that carbapenems are not used in animals in India emphasizes the need for active surveillance to identify the transmission and dynamics of such pathogens in companion animals.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Perros , Infecciones por Enterobacteriaceae/veterinaria , Escherichia coli , India , Pruebas de Sensibilidad Microbiana , Mascotas , beta-Lactamasas/genética
8.
Microb Cell Fact ; 19(1): 77, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209105

RESUMEN

BACKGROUND: Microbes are rich sources of enzymes and esterases are one of the most important classes of enzymes because of their potential for application in the field of food, agriculture, pharmaceuticals and bioremediation. Due to limitations in their cultivation, only a small fraction of the complex microbial communities can be cultured from natural habitats. Thus to explore the catalytic potential of uncultured organisms, the metagenomic approach has turned out to be an effective alternative method for direct mining of enzymes of interest. Based on activity-based screening method, an esterase-positive clone was obtained from metagenomic libraries. RESULTS: Functional screening of a soil metagenomic fosmid library, followed by transposon mutagenesis led to the identification of a 1179 bp esterase gene, estM2, that encodes a 392 amino acids long protein (EstM2) with a translated molecular weight of 43.12 kDa. Overproduction, purification and biochemical characterization of the recombinant protein demonstrated carboxylesterase activity towards short-chain fatty acyl esters with optimal activity for p-nitrophenyl butyrate at pH 8.0 and 37 °C. Amino acid sequence analysis and subsequent phylogenetic analysis suggested that EstM2 belongs to the family VIII esterases that bear modest similarities to class C ß-lactamases. EstM2 possessed the conserved S-x-x-K motif of class C ß-lactamases but did not exhibit ß-lactamase activity. Guided by molecular docking analysis, EstM2 was shown to hydrolyze a wide range of di- and monoesters of alkyl-, aryl- and benzyl-substituted phthalates. Thus, EstM2 displays an atypical hydrolytic potential of biotechnological significance within family VIII esterases. CONCLUSIONS: This study has led to the discovery of a new member of family VIII esterases. To the best of our knowledge, this is the first phthalate hydrolase (EstM2), isolated from a soil metagenomic library that belongs to a family possessing ß-lactamase like catalytic triad. Based on its catalytic potential towards hydrolysis of both phthalate diesters and phthalate monoesters, this enzyme may find use to counter the growing pollution caused by phthalate-based plasticizers in diverse geological environment and in other aspects of biotechnological applications.


Asunto(s)
Esterasas/genética , Metagenoma/genética , Ácidos Ftálicos/metabolismo
9.
J Bacteriol ; 198(12): 1755-1763, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068590

RESUMEN

UNLABELLED: The gene encoding a nonoxidative decarboxylase capable of catalyzing the transformation of 2-hydroxy-1-naphthoic acid (2H1NA) to 2-naphthol was identified, recombinantly expressed, and purified to homogeneity. The putative gene sequence of the decarboxylase (hndA) encodes a 316-amino-acid protein (HndA) with a predicted molecular mass of 34 kDa. HndA exhibited high identity with uncharacterized amidohydrolase 2 proteins of various Burkholderia species, whereas it showed a modest 27% identity with γ-resorcylate decarboxylase, a well-characterized nonoxidative decarboxylase belonging to the amidohydrolase superfamily. Biochemically characterized HndA demonstrated strict substrate specificity toward 2H1NA, whereas inhibition studies with HndA indicated the presence of zinc as the transition metal center, as confirmed by atomic absorption spectroscopy. A three-dimensional structural model of HndA, followed by docking analysis, identified the conserved metal-coordinating and substrate-binding residues, while their importance in catalysis was validated by site-directed mutagenesis. IMPORTANCE: Microbial nonoxidative decarboxylases play a crucial role in the metabolism of a large array of carboxy aromatic chemicals released into the environment from a variety of natural and anthropogenic sources. Among these, hydroxynaphthoic acids are usually encountered as pathway intermediates in the bacterial degradation of polycyclic aromatic hydrocarbons. The present study reveals biochemical and molecular characterization of a 2-hydroxy-1-naphthoic acid nonoxidative decarboxylase involved in an alternative metabolic pathway which can be classified as a member of the small repertoire of nonoxidative decarboxylases belonging to the amidohydrolase 2 family of proteins. The strict substrate specificity and sequence uniqueness make it a novel member of the metallo-dependent hydrolase superfamily.


Asunto(s)
Amidohidrolasas/metabolismo , Burkholderia/enzimología , Carboxiliasas/metabolismo , Ácidos Carboxílicos/metabolismo , Naftalenos/metabolismo , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Bacterias/química , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Burkholderia/química , Burkholderia/genética , Burkholderia/metabolismo , Carboxiliasas/química , Carboxiliasas/genética , Cinética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Alineación de Secuencia , Especificidad por Sustrato
10.
Appl Environ Microbiol ; 82(14): 4253-4263, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27208126

RESUMEN

UNLABELLED: Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2- and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2- and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2- and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain. IMPORTANCE: Mononitrobenzoates are toxic chemicals largely used for the production of various value-added products and enter the ecosystem through industrial wastes. Bacteria capable of degrading mononitrobenzoates are relatively limited. Unlike other contaminants, these man-made chemicals have entered the environment since the last century, and it is believed that bacteria in nature evolved not quite efficiently to assimilate these compounds; as a consequence, to date, there are only a few reports on the bacterial degradation of one or more isomers of mononitrobenzoate. In the present study, fortunately, we have been able to isolate a Cupriavidus sp. strain capable of assimilating both 2- and 4-nitrobenzoates as the sole carbon source. Results of the biochemical and molecular characterization of catabolic genes responsible for the degradation of mononitrobenzoates led us to manipulate a single enzymatic step, allowing the recombinant host organism to expand its catabolic potential to assimilate 3-nitrobenzoate.


Asunto(s)
Cupriavidus/genética , Cupriavidus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Nitrobenzoatos/metabolismo , Carbono/metabolismo , Metabolismo Energético , Técnicas de Inactivación de Genes , Familia de Multigenes , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Microbiology (Reading) ; 160(Pt 5): 892-902, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24554759

RESUMEN

Burkholderia sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical nag pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.


Asunto(s)
Burkholderia/enzimología , Burkholderia/metabolismo , Gentisatos/metabolismo , Naftalenos/metabolismo , Naftoles/metabolismo , Biotransformación , Carbono/metabolismo , Cromatografía , ADN Bacteriano/química , ADN Bacteriano/genética , Metabolismo Energético , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Análisis Espectral
12.
Avian Dis ; 58(1): 39-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24758111

RESUMEN

This study was undertaken to observe the prevalence, serogroup, avian pathogenic Escherichia coli (APEC)-associated virulence gene, randomly amplified polymorphic DNA (RAPD) pattern, and antibiotic resistance genes of E. coli in backyard layers and their environment in India. From the 360 samples of healthy layers and their environment, 272 (75.5%) E. coli were isolated. The majority (28.67%) of them were untypeable. Among the studied virulence genes (papC, tsh, iucC, astA), 52 (14.32%) isolates were found to possess astA, including the isolates from the drinking water of the birds (4/272, 1.47%). These strains belonged to 18 different serogroups. Most of the isolates were typeable by RAPD and they produced different patterns. Phenotypic resistance of the isolates was most frequently observed to erythromycin (95.83%), chloramphenicol (87.52%), and cotrimoxazole (78.26%). None of the isolates was found to possess extended-spectrum beta-lactamases (bla(TEM), bla(SHV), bla(CTX-M) or quinolone resistance (qnrA) genes by PCR. The present study was the first attempt in India to assess APEC distribution in backyard poultry production.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Escherichia coli/patogenicidad , Enfermedades de las Aves de Corral/microbiología , Factores de Virulencia/genética , Animales , Clima , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Femenino , Vivienda para Animales , Humanos , India/epidemiología , Datos de Secuencia Molecular , Enfermedades de las Aves de Corral/epidemiología , Prevalencia , Técnica del ADN Polimorfo Amplificado Aleatorio/veterinaria , Análisis de Secuencia de ADN/veterinaria , Serotipificación/veterinaria , Factores de Virulencia/metabolismo
13.
Biochem Biophys Res Commun ; 440(1): 68-75, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24041690

RESUMEN

Using different maximum-likelihood models of adaptive evolution, signatures of natural selective pressure, operating across the naphthalene family of dioxygenases, were examined. A lineage- and branch-site specific combined analysis revealed that purifying selection pressure dominated the evolutionary history of the enzyme family. Specifically, episodic positive Darwinian selection pressure, affecting only a few sites in a subset of lineages, was found to be responsible for the evolution of nitroarene dioxygenases (NArDO) from naphthalene dioxygenase (NDO). Site-specific analysis confirmed the absence of diversifying selection pressure at any particular site. Different sets of positively selected residues, obtained from branch-site specific analysis, were detected for the evolution of each NArDO. They were mainly located around the active site, the catalytic pocket and their adjacent regions, when mapped onto the 3D structure of the α-subunit of NDO. The present analysis enriches the current understanding of adaptive evolution and also broadens the scope for rational alteration of substrate specificity of enzyme by directed evolution.


Asunto(s)
Bacterias/enzimología , Dioxigenasas/genética , Evolución Molecular , Complejos Multienzimáticos/genética , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Dioxigenasas/química , Dioxigenasas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Nitrocompuestos/metabolismo , Filogenia
14.
Microbiol Spectr ; 11(4): e0480122, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37318352

RESUMEN

Phthalate diesters are extensively used as plasticizers in manufacturing plastic materials; however, because of their estrogenic properties, these chemicals have emerged as a global threat to human health. The present study investigated the course of degradation of a widely used plasticizer, benzyl butyl phthalate (BBP), by the bacterium PAE-6, belonging to the genus Rhodococcus. The metabolism of BBP, possessing structurally dissimilar side chains, was evaluated biochemically using a combination of respirometric, chromatographic, enzymatic, and mass-spectrometric analyses, depicting pathways of degradation. Consequently, the biochemical observations were corroborated by identifying possible catabolic genes from whole-genome analysis, and the involvement of inducible specific esterases and other degradative enzymes was validated by transcriptomic, reverse transcription-quantitative PCR (RT-qPCR) and proteomic analyses. Nonetheless, phthalic acid (PA), an intermediate of BBP, could not be efficiently metabolized by strain PAE-6, although the genome contains a PA-degrading gene cluster. This deficiency of complete degradation of BBP by strain PAE-6 was effectively managed by using a coculture of strains PAE-6 and PAE-2. The latter was identified as a Paenarthrobacter strain which can efficiently utilize PA. Based on sequence analysis of the PA-degrading gene cluster in strain PAE-6, it appeared that the alpha subunit of the multicomponent phthalate 3,4-dioxygenase harbors a number of altered residues in the multiple sequence alignment of homologous subunits, which may play a role(s) in poor turnover of PA. IMPORTANCE Benzyl butyl phthalate (BBP), an estrogenic, high-molecular-weight phthalic acid diester, is an extensively used plasticizer throughout the world. Due to its structural rigidity and hydrophobic nature, BBP gets adsorbed on sediments and largely escapes the biotic and abiotic degradative processes of the ecosystem. In the present study, a potent BBP-degrading bacterial strain belonging to the genus Rhodococcus was isolated that can also assimilate a number of other phthalate diesters of environmental concern. Various biochemical and multi-omics analyses revealed that the strain harbors all the required catabolic machinery for the degradation of the plasticizer and elucidated the inducible regulation of the associated catabolic genes and gene clusters.


Asunto(s)
Plastificantes , Rhodococcus , Humanos , Plastificantes/química , Plastificantes/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Proteómica , Ecosistema , Multiómica
15.
Microbiology (Reading) ; 158(Pt 3): 685-695, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194350

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) comprise a group of priority organic pollutants that are toxic and/or carcinogenic. Phenanthrene, the simplest PAH among recognized priority pollutants, is commonly used as a model compound for the study of PAH biodegradation. Sphingobium sp. strain PNB, capable of degrading phenanthrene as a sole carbon and energy source, was isolated from a municipal waste-contaminated soil sample. A combination of chromatographic and spectrometric analyses, together with oxygen uptake and enzyme activity studies, suggested the presence of phenanthrene degradation pathways in this strain. Identification of metabolites suggested that initial dioxygenation of phenanthrene took place at both 3,4- and 1,2-carbon positions; meta-cleavage of resultant diols led to the formation of 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid, respectively. The hydroxynaphthoic acids, in turn, were metabolized by a meta-cleavage pathway(s), leading to the formation of 2,2-dicarboxychromene and 2-hydroxychromene-2-glyoxylic acid, respectively. These metabolites were subsequently transformed to catechol via salicylic acid, which further proceeds towards the tricarboxylic acid cycle leading to complete mineralization of the compound phenanthrene. The present study establishes the metabolism of hydroxynaphthoic acids by a meta-cleavage pathway in the degradation of phenanthrene, expanding our current understanding of microbial degradation of PAHs.


Asunto(s)
Naftoles/metabolismo , Fenantrenos/metabolismo , Sphingomonadaceae/metabolismo , Cromatografía , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Contaminantes Ambientales/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Oxígeno/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Análisis Espectral , Sphingomonadaceae/genética , Sphingomonadaceae/aislamiento & purificación
16.
Environ Microbiol Rep ; 14(3): 333-346, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34816599

RESUMEN

The alpha/beta-fold superfamily of hydrolases is rapidly becoming one of the largest groups of structurally related enzymes with diverse catalytic functions. In this superfamily of enzymes, esterase deserves special attention because of their wide distribution in biological systems and importance towards environmental and industrial applications. Among various esterases, phthalate hydrolases are the key alpha/beta enzymes involved in the metabolism of structurally diverse estrogenic phthalic acid esters, ubiquitously distributed synthetic chemicals, used as plasticizer in plastic manufacturing processes. Although they vary both at the sequence and functional levels, these hydrolases use a similar acid-base-nucleophile catalytic mechanism to catalyse reactions on structurally different substrates. The current review attempts to present insights on phthalate hydrolases, describing their sources, structural diversities, phylogenetic affiliations and catalytically different types or classes of enzymes, categorized as diesterase, monoesterase and diesterase-monoesterase, capable of hydrolysing phthalate diester, phthalate monoester and both respectively. Furthermore, available information on in silico analyses and site-directed mutagenesis studies revealing structure-function integrity and altered enzyme kinetics have been highlighted along with the possible scenario of their evolution at the molecular level.


Asunto(s)
Hidrolasas , Ácidos Ftálicos , Esterasas/química , Esterasas/genética , Esterasas/metabolismo , Evolución Molecular , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Ácidos Ftálicos/metabolismo , Filogenia
17.
Water Res ; 211: 118054, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066262

RESUMEN

Large river systems, such as the River Ganges (Ganga), provide crucial water resources for the environment and society, yet often face significant challenges associated with cumulative impacts arising from upstream environmental and anthropogenic influences. Understanding the complex dynamics of such systems remains a major challenge, especially given accelerating environmental stressors including climate change and urbanization, and due to limitations in data and process understanding across scales. An integrated approach is required which robustly enables the hydrogeochemical dynamics and underpinning processes impacting water quality in large river systems to be explored. Here we develop a systematic approach for improving the understanding of hydrogeochemical dynamics and processes in large river systems, and apply this to a longitudinal survey (> 2500 km) of the River Ganges (Ganga) and key tributaries in the Indo-Gangetic basin. This framework enables us to succinctly interpret downstream water quality trends in response to the underpinning processes controlling major element hydrogeochemistry across the basin, based on conceptual water source signatures and dynamics. Informed by a 2019 post-monsoonal survey of 81 river bank-side sampling locations, the spatial distribution of a suite of selected physico-chemical and inorganic parameters, combined with segmented linear regression, reveals minor and major downstream hydrogeochemical transitions. We use this information to identify five major hydrogeochemical zones, characterized, in part, by the inputs of key tributaries, urban and agricultural areas, and estuarine inputs near the Bay of Bengal. Dominant trends are further explored by investigating geochemical relationships (e.g. Na:Cl, Ca:Na, Mg:Na, Sr:Ca and NO3:Cl), and how water source signatures and dynamics are modified by key processes, to assess the relative importance of controls such as dilution, evaporation, water-rock interactions (including carbonate and silicate weathering) and anthropogenic inputs. Mixing/dilution between sources and water-rock interactions explain most regional trends in major ion chemistry, although localized controls plausibly linked to anthropogenic activities are also evident in some locations. Temporal and spatial representativeness of river bank-side sampling are considered by supplementary sampling across the river at selected locations and via comparison to historical records. Limitations of such large-scale longitudinal sampling programs are discussed, as well as approaches to address some of these inherent challenges. This approach brings new, systematic insight into the basin-wide controls on the dominant geochemistry of the River Ganga, and provides a framework for characterising dominant hydrogeochemical zones, processes and controls, with utility to be transferable to other large river systems.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , India , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Tiempo (Meteorología)
18.
Crit Rev Microbiol ; 37(1): 64-90, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20846026

RESUMEN

Widespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways. The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.


Asunto(s)
Bacterias/metabolismo , Redes y Vías Metabólicas , Oxigenasas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Bacterias/enzimología , Hidrocarburos Policíclicos Aromáticos/química
19.
Sci Rep ; 11(1): 190, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420198

RESUMEN

Host-pathogen interaction is one of the most powerful determinants involved in coevolutionary processes covering a broad range of biological phenomena at molecular, cellular, organismal and/or population level. The present study explored host-pathogen interaction from the perspective of human-bacteria protein-protein interaction based on large-scale interspecific and intraspecific interactome data for human and three pathogenic bacterial species, Bacillus anthracis, Francisella tularensis and Yersinia pestis. The network features revealed a preferential enrichment of intraspecific hubs and bottlenecks for both human and bacterial pathogens in the interspecific human-bacteria interaction. Analyses unveiled that these bacterial pathogens interact mostly with human party-hubs that may enable them to affect desired functional modules, leading to pathogenesis. Structural features of pathogen-interacting human proteins indicated an abundance of protein domains, providing opportunities for interspecific domain-domain interactions. Moreover, these interactions do not always occur with high-affinity, as we observed that bacteria-interacting human proteins are rich in protein-disorder content, which correlates positively with the number of interacting pathogen proteins, facilitating low-affinity interspecific interactions. Furthermore, functional analyses of pathogen-interacting human proteins revealed an enrichment in regulation of processes like metabolism, immune system, cellular localization and transport apart from divulging functional competence to bind enzyme/protein, nucleic acids and cell adhesion molecules, necessary for host-microbial cross-talk.


Asunto(s)
Biología Computacional , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Mapeo de Interacción de Proteínas , Humanos
20.
Front Pharmacol ; 12: 584019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790782

RESUMEN

Suaeda monoica Forssk. ex J.F.Gmel. (Amaranthaceae), a mangrove associate and ethno-medicinal herb of Indian Sundarbans, was investigated as a promising source of bioactive compounds. Various polar and nonpolar solvent extracts of the leaf and root-shoot parts of the plant exhibited antioxidant, antibacterial, antifungal, allelopathic, mosquitocidal, antihaemolytic and antidiuretic potential. Moreover, to meet pharmacological requirements, the antioxidant ability of the plant was validated by both chemical and biological analyses. Extraction yield and presence of different phytochemicals like phenolics, flavonoids, tannins and saponins were compared in various solvent-extracted fractions. Principle component analysis revealed that the antioxidant property present in different extracts maintained a positive correlation with the occurrence of polyphenols (phenolics, tannins and flavonoids). Biochemical evaluation, HPLC examination and GC-MS analysis showed a differential level of the presence of various phytochemicals in different solvent extracts. In contrast to mosquitocidal, antioxidant, antihaemolytic and phytotoxic properties which were observed to be dominant in polar solvent extracts, maximum antibacterial potency was detected in nonpolar n-hexane fractions. Overall, the plant extract is nontoxic in nature and a dose amounting to 3,000 mg/kg was well tolerated by Swiss albino mice. A combination of HPLC and GC-MS analyses showed the presence of a large number of structurally diverse phytochemicals, many of which had already been reported as insecticidal, mosquitocidal, antibacterial, herbicidal, antidiuretic, antioxidant and anti-haemolytic compounds. All these findings support that the least explored traditional edible medicinal mangrove associate S.monoica is enriched with multiple bioactive molecules and may be considered as one of the richest sources of various lead molecules of pharmaceutical importance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA