Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurobiol Dis ; 181: 106116, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054900

RESUMEN

Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy. With this in mind, we have developed a model of tauopathy by overexpression of the human wild-type Tau protein in retinal ganglion cells in mice (RGCs). This overexpression led to the presence of hyperphosphorylated forms of the protein in the transduced cells as well as to their progressive degeneration. The application of this model to mice deficient in TREM2 (Triggering Receptor Expressed on Myeloid cells-2, an important genetic risk factor for AD) as well as to 15-month-old mice showed that microglia actively participate in the degeneration of RGCs. Surprisingly, although we were able to detect the transgenic Tau protein up to the terminal arborization of RGCs at the level of the superior colliculi, spreading of the transgenic Tau protein to post-synaptic neurons was detected only in aged animals. This suggests that there may be neuron-intrinsic- or microenvironment mediators facilitating this spreading that appear with aging.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Células Ganglionares de la Retina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/patología , Vías Visuales/metabolismo
2.
Neurobiol Dis ; 155: 105398, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019997

RESUMEN

The role played by microglia has taken the center of the stage in the etiology of Alzheimer's disease (AD). Several genome-wide association studies carried out on large cohorts of patients have indeed revealed a large number of genetic susceptibility factors corresponding to genes involved in neuroinflammation and expressed specifically by microglia in the brain. Among these genes TREM2, a cell surface receptor expressed by microglia, arouses strong interest because its R47H variant confers a risk of developing AD comparable to the ε4 allele of the APOE gene. Since this discovery, a growing number of studies have therefore examined the role played by TREM2 in the evolution of amyloid plaques and neurofibrillary tangles, the two brain lesions characteristic of AD. Many studies report conflicting results, reflecting the complex nature of microglial activation in AD. Here, we investigated the impact of TREM2 deficiency in the THY-Tau22 transgenic line, a well-characterized model of tauopathy. Our study reports an increase in the severity of tauopathy lesions in mice deficient in TREM2 occurring at an advanced stage of the pathology. This exacerbation of pathology was associated with a reduction in microglial activation indicated by typical morphological features and altered expression of specific markers. However, it was not accompanied by any further changes in memory performance. Our longitudinal study confirms that a defect in microglial TREM2 signaling leads to an increase in neuronal tauopathy occurring only at late stages of the disease.


Asunto(s)
Modelos Animales de Enfermedad , Glicoproteínas de Membrana/deficiencia , Microglía/metabolismo , Receptores Inmunológicos/deficiencia , Tauopatías/metabolismo , Antígenos Thy-1/genética , Proteínas tau/genética , Animales , Femenino , Humanos , Estudios Longitudinales , Masculino , Aprendizaje por Laberinto/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Receptores Inmunológicos/genética , Tauopatías/genética , Tauopatías/patología
3.
Biomed Pharmacother ; 177: 117039, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955085

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.


Asunto(s)
Progresión de la Enfermedad , Factor de Crecimiento de Hepatocito , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Microambiente Tumoral , Animales , Factor de Crecimiento de Hepatocito/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ratones , Ratones Endogámicos C57BL , Línea Celular Tumoral , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA