Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Can J Microbiol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083844

RESUMEN

Antimicrobial resistance is an ever-increasing threat. The widespread usage of ciprofloxacin has led to the manifestation of resistance due to chromosomal mutations or the acquisition of plasmid-mediated quinolone resistance (PMQR) traits. Some particular PMQR traits, qnr genes, have been identified globally in clinical and environmental isolates. This study aimed to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in Southern Ontario and investigate the extent of dissemination of ciprofloxacin resistance traits among the bacterial communities. We surveyed the prevalence of plasmid encoding qnr genes using a multiplex PCR assay of associated PMQR genes, qnrA, qnrB, and qnrS, on 202 isolates. Despite the absence of significant impacts on minimum inhibitory concentration (MIC) levels, the presence of qnr genes correlates with heightened resistance to quinolones and nalidixic acid in some isolates. Taxonomic analysis highlights distinct differences in the composition and diversity of ciprofloxacin-sensitive (CipS) and ciprofloxacin-resistant (CipR) populations, with Proteobacteria dominating both groups. Importantly, CipR populations exhibit lower genetic diversity but higher prevalence of multiple antibiotic resistances, suggesting co-selection mechanisms. Co-occurrence analysis highlights significant associations between ciprofloxacin resistance and other antibiotic resistances, implicating complex genetic linkages. The results of our study signified the critical role of environmental monitoring in public health.

2.
Proc Natl Acad Sci U S A ; 116(48): 24093-24099, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712427

RESUMEN

Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.


Asunto(s)
Proteína 3 Modificadora de la Actividad de Receptores/fisiología , Receptores CCR3/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Movimiento Celular , Células HEK293 , Humanos , Lisosomas/metabolismo , Neovascularización Fisiológica , Proteína 3 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Receptores CXCR/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA