Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Care ; 28(1): 270, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135180

RESUMEN

BACKGROUND: Sepsis presents a challenge due to its complex immune responses, where balance between inflammation and anti-inflammation is critical for survival. Glucocorticoid-induced leucine zipper (GILZ) is key protein in achieving this balance, suppressing inflammation and mediating glucocorticoid response. This study aims to investigate GILZ transcript variants in sepsis patients and explore their potential for patient stratification and optimizing glucocorticoid therapy. METHODS: Sepsis patients meeting the criteria outlined in Sepsis-3 were enrolled, and RNA was isolated from whole blood samples. Quantitative mRNA expression of GILZ transcript variants in both sepsis patient samples (n = 121) and the monocytic U937 cell line (n = 3), treated with hydrocortisone and lipopolysaccharides, was assessed using quantitative PCR (qPCR). RESULTS: Elevated expression of GILZ transcript variant 1 (GILZ TV 1) serves as a marker for heightened 30-day mortality in septic patients. Increased levels of GILZ TV 1 within the initial day of sepsis onset are associated with a 2.2-[95% CI 1.2-4.3] fold rise in mortality, escalating to an 8.5-[95% CI 2.0-36.4] fold increase by day eight. GILZ TV1 expression is enhanced by glucocorticoids in cell culture but remains unaffected by inflammatory stimuli such as LPS. In septic patients, GILZ TV 1 expression increases over the course of sepsis and in response to hydrocortisone treatment. Furthermore, a high expression ratio of transcript variant 1 relative to all GILZ mRNA TVs correlates with a 2.3-fold higher mortality rate in patients receiving hydrocortisone treatment. CONCLUSION: High expression of GILZ TV 1 is associated with a higher 30-day sepsis mortality rate. Moreover, a high expression ratio of GILZ TV 1 relative to all GILZ transcript variants is a parameter for identifying patient subgroups in which hydrocortisone may be contraindicated.


Asunto(s)
Hidrocortisona , Sepsis , Factores de Transcripción , Humanos , Sepsis/tratamiento farmacológico , Sepsis/mortalidad , Hidrocortisona/uso terapéutico , Hidrocortisona/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Factores de Transcripción/análisis , Factores de Transcripción/genética
2.
Pathogens ; 13(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276162

RESUMEN

Sepsis, a severe global healthcare challenge, is characterized by significant morbidity and mortality. The 2016 redefinition by the Third International Consensus Definitions Task Force emphasizes its complexity as a "life-threatening organ dysfunction caused by a dysregulated host response to infection". Bacterial pathogens, historically dominant, exhibit geographic variations, influencing healthcare strategies. The intricate dynamics of bacterial immunity involve recognizing pathogen-associated molecular patterns, triggering innate immune responses and inflammatory cascades. Dysregulation leads to immunothrombosis, disseminated intravascular coagulation, and mitochondrial dysfunction, contributing to the septic state. Viral sepsis, historically less prevalent, saw a paradigm shift during the COVID-19 pandemic, underscoring the need to understand the immunological response. Retinoic acid-inducible gene I-like receptors and Toll-like receptors play pivotal roles, and the cytokine storm in COVID-19 differs from bacterial sepsis. Latent viruses like human cytomegalovirus impact sepsis by reactivating during the immunosuppressive phases. Challenges in sepsis management include rapid pathogen identification, antibiotic resistance monitoring, and balancing therapy beyond antibiotics. This review highlights the evolving sepsis landscape, emphasizing the need for pathogen-specific therapeutic developments in a dynamic and heterogeneous clinical setting.

3.
Front Immunol ; 15: 1386586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779663

RESUMEN

Background: Sepsis, a life-threatening condition caused by the dysregulated host response to infection, is a major global health concern. Understanding the impact of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes. This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity as a risk factor for development of sepsis in patients with COVID-19. Methods: A multicenter observational study enrolled 95 intensive care patients with COVID-19-induced sepsis and 80 post-surgery individuals as controls. HCMV serostatus was determined using an ELISA test. Comprehensive clinical data, including demographics, comorbidities, and 30-day mortality, were collected. Statistical analyses evaluated the association between HCMV seropositivity and COVID-19 induced sepsis. Results: The prevalence of HCMV seropositivity did not significantly differ between COVID-19-induced sepsis patients (78%) and controls (71%, p = 0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV seropositivity was significantly higher in COVID-19 sepsis patients compared to controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus did not affect 30-day survival. Discussion: These findings confirm the association between HCMV seropositivity and COVID-19 sepsis in non-geriatric patients. However, the lack of an independent effect on 30-day survival can be explained by the cross-reactivity of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might confer some protection to HCMV seropositive patients. The inclusion of a post-surgery control group strengthens the generalizability of the findings. Further research is needed to elucidate the underlying mechanisms of this association, explore different patient populations, and identify interventions for optimizing patient management. Conclusion: This study validates the association between HCMV seropositivity and severe COVID-19-induced sepsis in non-geriatric patients, contributing to the growing body of evidence on viral pathogens in sepsis. Although HCMV serostatus did not independently influence 30-day survival, future investigations should focus on unraveling the intricate interplay between HCMV, immune responses, and COVID-19. These insights will aid in risk stratification and the development of targeted interventions for viral sepsis.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Citomegalovirus , SARS-CoV-2 , Sepsis , Humanos , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/epidemiología , COVID-19/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Sepsis/inmunología , Sepsis/epidemiología , Sepsis/mortalidad , Citomegalovirus/inmunología , Anciano , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/mortalidad , Infecciones por Citomegalovirus/complicaciones , SARS-CoV-2/inmunología , Factores de Riesgo , Adulto , Anticuerpos Antivirales/sangre
4.
Cells ; 11(19)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230982

RESUMEN

Clinical success of Toll-Like receptor-4 (TLR-4) antagonists in sepsis therapy has thus far been lacking. As inhibition of a receptor can only be useful if the receptor is active, stratification of patients with active TLR-4 would be desirable. Our aim was to establish an assay to quantify phosphorylated TLR-4 using the proximity ligation assay (PLA). HEK293 TLR4/MD2/CD14 as well as THP-1 cells were stimulated with LPS and the activation of TLR-4 was measured using the PLA. Furthermore, peripheral blood mononuclear cells (PBMCs) from 25 sepsis patients were used to show the feasibility of this assay in clinical material. Activation of TLR-4 in these samples was compared to the PBMCs of 11 healthy individuals. We could show a transient activation of TLR-4 in both cell lines. Five min after the LPS stimulation, the signal increased 6.7-fold in the HEK293 cells and 4.3-fold in the THP-1 cells. The assay also worked well in the PBMCs of septic patients. Phosphorylation of TLR-4 at study inclusion was 2.9 times higher in septic patients compared to healthy volunteers. To conclude, we established a diagnostic assay that is able to quantify the phosphorylation of TLR-4 in cell culture and in clinical samples of sepsis patients. This makes large-scale stratification of sepsis patients for their TLR-4 activation status possible.


Asunto(s)
Sepsis , Receptor Toll-Like 4/metabolismo , Células HEK293 , Humanos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA