Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Endocrinol Metab ; 300(2): E327-40, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21045173

RESUMEN

Declines in skeletal muscle size and strength, often seen with chronic wasting diseases, prolonged or high-dose glucocorticoid therapy, and the natural aging process in mammals, are usually associated with reduced physical activity and testosterone levels. However, it is not clear whether the decline in testosterone and activity are causally related. Using a mouse model, we found that removal of endogenous testosterone by orchidectomy results in an almost complete cessation in voluntary wheel running but only a small decline in muscle mass. Testosterone replacement restored running behavior and muscle mass to normal levels. Orchidectomy also suppressed the IGF-I/Akt pathway, activated the atrophy-inducing E3 ligases MuRF1 and MAFBx, and suppressed several energy metabolism pathways, and all of these effects were reversed by testosterone replacement. The study also delineated a distinct, previously unidentified set of genes that is inversely regulated by orchidectomy and testosterone treatment. These data demonstrate the necessity of testosterone for both speed and endurance of voluntary wheel running in mice and suggest a potential mechanism for declined activity in humans where androgens are deficient.


Asunto(s)
Expresión Génica/fisiología , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Orquiectomía , Carrera/fisiología , Transducción de Señal/fisiología , Testosterona/farmacología , Anatomía Transversal , Animales , Western Blotting , Peso Corporal/fisiología , Ingestión de Alimentos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/citología , Tamaño de los Órganos/fisiología , Resistencia Física/fisiología , ARN/biosíntesis , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testosterona/sangre
2.
Mech Ageing Dev ; 197: 111510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019916

RESUMEN

Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.


Asunto(s)
Envejecimiento/metabolismo , Empalme Alternativo , Músculo Esquelético/metabolismo , Distrofia Miotónica/metabolismo , Receptores de Superficie Celular/biosíntesis , Sarcopenia/metabolismo , Envejecimiento/patología , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/patología , Ratas , Ratas Sprague-Dawley
3.
Mol Cell Biol ; 39(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31308131

RESUMEN

There is a lack of pharmacological interventions available for sarcopenia, a progressive age-associated loss of muscle mass, leading to a decline in mobility and quality of life. We found mTORC1 (mammalian target of rapamycin complex 1), a well-established positive modulator of muscle mass, to be surprisingly hyperactivated in sarcopenic muscle. Furthermore, partial inhibition of the mTORC1 pathway counteracted sarcopenia, as determined by observing an increase in muscle mass and fiber type cross-sectional area in select muscle groups, again surprising because mTORC1 signaling has been shown to be required for skeletal muscle mass gains in some models of hypertrophy. Additionally, several genes related to senescence were downregulated and gene expression indicators of neuromuscular junction denervation were diminished using a low dose of a "rapalog" (a pharmacological agent related to rapamycin). Therefore, partial mTORC1 inhibition may delay the progression of sarcopenia by directly and indirectly modulating multiple age-associated pathways, implicating mTORC1 as a therapeutic target to treat sarcopenia.


Asunto(s)
Everolimus/administración & dosificación , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Sarcopenia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Everolimus/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sarcopenia/metabolismo
4.
Mol Cell Biol ; 33(2): 194-212, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23109432

RESUMEN

Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.


Asunto(s)
Envejecimiento/genética , Mitocondrias/metabolismo , Unión Neuromuscular/patología , Proteoma/análisis , Sarcopenia/patología , Transcriptoma , Envejecimiento/metabolismo , Animales , ADN Mitocondrial/genética , Metabolismo Energético , Perfilación de la Expresión Génica , Inmunohistoquímica , Modelos Lineales , Masculino , Análisis por Micromatrices , Mitocondrias/genética , Mitocondrias/patología , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Cambios Post Mortem , Proteómica , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Regulación hacia Arriba
5.
Dev Cell ; 23(6): 1176-88, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23177649

RESUMEN

A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development.


Asunto(s)
Proteína HMGA2/metabolismo , Desarrollo de Músculos , Músculo Esquelético/citología , Mioblastos/citología , Mioblastos/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Regulación hacia Abajo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mioblastos/fisiología , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Receptor IGF Tipo 1/biosíntesis , Células Satélite del Músculo Esquelético/metabolismo , Factor de Transcripción Sp1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA