Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(19): 6425-37, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806669

RESUMEN

Recent studies implicate death receptor 6 (DR6) in an amyloid precursor protein (APP)-dependent pathway regulating developmental axon pruning, and in a pruning pathway operating during plastic rearrangements in adult brain. DR6 has also been suggested to mediate toxicity in vitro of Aß peptides derived from APP. Given the link between APP, Aß, and Alzheimer's disease (AD), these findings have raised the possibility that DR6 contributes to aspects of neurodegeneration in AD. To test this possibility, we have used mouse models to characterize potential function(s) of DR6 in the adult CNS and in AD-related pathophysiology. We show that DR6 is broadly expressed within the adult CNS and regulates the density of excitatory synaptic connections onto pyramidal neurons in a genetic pathway with APP. DR6 knock-out also gives rise to behavioral abnormalities, some of which are similar to those previously documented in APP knock-out animals. However, in two distinct APP transgenic models of AD, we did not observe any alteration in the formation of amyloid plaques, gliosis, synaptic loss, or cognitive behavioral deficits with genetic deletion of DR6, though we did observe a transient reduction in the degree of microglial activation in one model. Our results support the view that DR6 functions with APP to modulate synaptic density in the adult CNS, but do not provide evidence for a role of DR6 in the pathophysiology of AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/fisiología , Sistema Nervioso Central/citología , Receptores del Factor de Necrosis Tumoral/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Enfermedad de Alzheimer/patología , Animales , Reacción de Prevención/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Condicionamiento Operante/fisiología , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Miedo/psicología , Gliosis/patología , Humanos , Hibridación in Situ , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Placa Amiloide/patología
2.
J Neurosci ; 34(19): 6438-47, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806670

RESUMEN

In the developing brain, initial neuronal projections are formed through extensive growth and branching of developing axons, but many branches are later pruned to sculpt the mature pattern of connections. Despite its widespread occurrence, the mechanisms controlling pruning remain incompletely characterized. Based on pharmacological and biochemical analysis in vitro and initial genetic analysis in vivo, prior studies implicated a pathway involving binding of the Amyloid Precursor Protein (APP) to Death Receptor 6 (DR6) and activation of a downstream caspase cascade in axonal pruning. Here, we further test their involvement in pruning in vivo and their mechanism of action through extensive genetic and biochemical analysis. Genetic deletion of DR6 was previously shown to impair pruning of retinal axons in vivo. We show that genetic deletion of APP similarly impairs pruning of retinal axons in vivo and provide evidence that APP and DR6 act cell autonomously and in the same pathway to control pruning. Prior analysis had suggested that ß-secretase cleavage of APP and binding of an N-terminal fragment of APP to DR6 is required for their actions, but further genetic and biochemical analysis reveals that ß-secretase activity is not required and that high-affinity binding to DR6 requires a more C-terminal portion of the APP ectodomain. These results provide direct support for the model that APP and DR6 function cell autonomously and in the same pathway to control pruning in vivo and raise the possibility of alternate mechanisms for how APP and DR6 control pruning.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Precursor de Proteína beta-Amiloide/genética , Axones/fisiología , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Recuento de Células , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Inmunohistoquímica , Inmunoprecipitación , Ratones , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Unión Proteica , ARN Interferente Pequeño/genética , Células Ganglionares de la Retina/fisiología , Células Receptoras Sensoriales/fisiología
3.
Front Immunol ; 10: 2199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616414

RESUMEN

Microglia are specialized brain macrophages that play numerous roles in tissue homeostasis and response to injury. Colony stimulating factor 1 receptor (CSF1R) is a receptor tyrosine kinase required for the development, maintenance, and proliferation of microglia. Here we show that in adult mice peripheral dosing of function-blocking antibodies to the two known ligands of CSF1R, CSF1, and IL-34, can deplete microglia differentially in white and gray matter regions of the brain, respectively. The regional patterns of depletion correspond to the differential expression of CSF1 and IL-34. In addition, we show that while CSF1 is required to establish microglia in the developing embryo, both CSF1 and IL-34 are required beginning in early postnatal development. These results not only clarify the roles of CSF1 and IL-34 in microglia maintenance, but also suggest that signaling through these two ligands might support distinct sub-populations of microglia, an insight that may impact drug development for neurodegenerative and other diseases.


Asunto(s)
Sustancia Gris/inmunología , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Microglía/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Sustancia Blanca/inmunología , Animales , Interleucinas/genética , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Ratones Transgénicos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Transducción de Señal/genética , Transducción de Señal/inmunología
4.
Cell Rep ; 3(4): 1199-212, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23602570

RESUMEN

Synapse formation is a complex process that involves the recruitment and assembly of a myriad of pre- and postsynaptic proteins. Despite being present at every synapse in the vertebrate CNS, little is known about the transport, recruitment, and stabilization of synapsin at nascent synapses during development. We examined the transport and recruitment of synapsin to nascent presynaptic terminals in vivo in the developing zebrafish spinal cord. Synapsin was transported in a transport packet independently of two other presynaptic organelles: synaptic vesicle (SV) protein transport vesicles (STVs) and Piccolo-containing active zone precursor transport vesicles (PTVs). During presynaptic assembly, recruitment of all three transport packets occurred in an ordered sequence: STVs preceded PTVs, which in turn preceded synapsin. Importantly, cyclin-dependent kinase 5 (Cdk5) specifically regulated the late recruitment of synapsin transport packets at synapses. These results point to additional layers of complexity in the established mechanisms of synaptogenesis.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Sinapsis/metabolismo , Sinapsinas/metabolismo , Animales , Axones/metabolismo , Cadherinas/metabolismo , Guanilato-Quinasas/metabolismo , Sinapsis/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Transportadoras/metabolismo , Pez Cebra
5.
Dev Dyn ; 237(1): 233-46, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18095341

RESUMEN

The Cadm (cell adhesion molecule) family of cell adhesion molecules (also known as IGSF4, SynCAM, Necl and TSLC) has been implicated in a multitude of physiological and pathological processes, such as spermatogenesis, synapse formation and lung cancer. The precise mechanisms by which these adhesion molecules mediate these diverse functions remain unknown. To investigate mechanisms of action of these molecules during development, we have identified zebrafish orthologs of Cadm family members and have examined their expression patterns during development and in the adult. Zebrafish possess six cadm genes. Sequence comparisons and phylogenetic analysis suggest that four of the zebrafish cadm genes represent duplicates of two tetrapod Cadm genes, whereas the other two cadm genes are single orthologs of tetrapod Cadm genes. All six zebrafish cadms are expressed throughout the nervous system both during development and in the adult. The spatial and temporal patterns of expression suggest multiple roles for Cadms during nervous system development.


Asunto(s)
Moléculas de Adhesión Celular/genética , Sistema Nervioso Central/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/clasificación , Sistema Nervioso Central/crecimiento & desarrollo , Hibridación in Situ , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/genética , Homología de Secuencia de Aminoácido , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA