Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 16937, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209288

RESUMEN

We propose a multi-agent learning approach for designing crowdsourcing contests and All-Pay auctions. Prizes in contests incentivise contestants to expend effort on their entries, with different prize allocations resulting in different incentives and bidding behaviors. In contrast to auctions designed manually by economists, our method searches the possible design space using a simulation of the multi-agent learning process, and can thus handle settings where a game-theoretic equilibrium analysis is not tractable. Our method simulates agent learning in contests and evaluates the utility of the resulting outcome for the auctioneer. Given a large contest design space, we assess through simulation many possible contest designs within the space, and fit a neural network to predict outcomes for previously untested contest designs. Finally, we apply mirror ascent to optimize the design so as to achieve more desirable outcomes. Our empirical analysis shows our approach closely matches the optimal outcomes in settings where the equilibrium is known, and can produce high quality designs in settings where the equilibrium strategies are not solvable analytically.


Asunto(s)
Colaboración de las Masas , Aprendizaje Profundo , Simulación por Computador , Motivación
2.
Nat Commun ; 13(1): 7214, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473833

RESUMEN

The success of human civilization is rooted in our ability to cooperate by communicating and making joint plans. We study how artificial agents may use communication to better cooperate in Diplomacy, a long-standing AI challenge. We propose negotiation algorithms allowing agents to agree on contracts regarding joint plans, and show they outperform agents lacking this ability. For humans, misleading others about our intentions forms a barrier to cooperation. Diplomacy requires reasoning about our opponents' future plans, enabling us to study broken commitments between agents and the conditions for honest cooperation. We find that artificial agents face a similar problem as humans: communities of communicating agents are susceptible to peers who deviate from agreements. To defend against this, we show that the inclination to sanction peers who break contracts dramatically reduces the advantage of such deviators. Hence, sanctioning helps foster mostly truthful communication, despite conditions that initially favor deviations from agreements.


Asunto(s)
Inteligencia Artificial , Humanos
3.
Science ; 378(6624): 1092-1097, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480631

RESUMEN

Programming is a powerful and ubiquitous problem-solving tool. Systems that can assist programmers or even generate programs themselves could make programming more productive and accessible. Recent transformer-based neural network models show impressive code generation abilities yet still perform poorly on more complex tasks requiring problem-solving skills, such as competitive programming problems. Here, we introduce AlphaCode, a system for code generation that achieved an average ranking in the top 54.3% in simulated evaluations on recent programming competitions on the Codeforces platform. AlphaCode solves problems by generating millions of diverse programs using specially trained transformer-based networks and then filtering and clustering those programs to a maximum of just 10 submissions. This result marks the first time an artificial intelligence system has performed competitively in programming competitions.

4.
Science ; 378(6623): 990-996, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454847

RESUMEN

We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker. The technique underpinning DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego through self-play from scratch. DeepNash beat existing state-of-the-art AI methods in Stratego and achieved a year-to-date (2022) and all-time top-three ranking on the Gravon games platform, competing with human expert players.


Asunto(s)
Inteligencia Artificial , Refuerzo en Psicología , Juegos de Video , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA