Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990824

RESUMEN

Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.


Asunto(s)
Hibridación Fluorescente in Situ , Metagenoma , Consorcios Microbianos/genética , Genoma Bacteriano , Bacterias/genética , Bacterias/metabolismo , Variación Genética , Filogenia
2.
Nature ; 579(7798): 250-255, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32161389

RESUMEN

The lithified lower oceanic crust is one of Earth's last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth1-3 or to meet basal power requirements4 during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth's lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm3). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Metabolismo Energético/genética , Sedimentos Geológicos/microbiología , Microbiota/genética , Océanos y Mares , Ciclo del Carbono/genética , Perfilación de la Expresión Génica
3.
Environ Microbiol ; 26(3): e16598, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444221

RESUMEN

The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.


Asunto(s)
Biodiversidad , Conducta Predatoria , Animales , Biomasa , Planeta Tierra , Ecosistema
4.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266956

RESUMEN

Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.


Asunto(s)
Bacterias/aislamiento & purificación , Carbono/metabolismo , Eucariontes/fisiología , Respiraderos Hidrotermales/parasitología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Ciclo del Carbono , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Respiraderos Hidrotermales/microbiología , Océano Pacífico , Filogenia , Agua de Mar/microbiología , Agua de Mar/parasitología
6.
Nat Methods ; 17(5): 481-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251396

RESUMEN

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Asunto(s)
ADN/administración & dosificación , Eucariontes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Biología Marina , Modelos Biológicos , Transformación Genética , Biodiversidad , Ecosistema , Ambiente , Eucariontes/clasificación , Especificidad de la Especie
7.
Mol Ecol ; 32(11): 2750-2765, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852430

RESUMEN

Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.


Asunto(s)
Ecosistema , Micobioma , Hongos/genética , Micobioma/genética , China , Microbiología del Agua , Agua de Mar/microbiología
9.
Environ Microbiol ; 24(4): 1818-1834, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315564

RESUMEN

Protists are integral to marine food webs and biogeochemical cycles; however, there is a paucity of data describing specific ecological niches for some of the most abundant taxa in marker gene libraries. Syndiniales are one such group, often representing the majority of sequence reads recovered from picoplankton samples across the global ocean. However, the prevalence and impacts of syndinian parasitism in marine environments remain unclear. We began to address these critical knowledge gaps by generating a high-resolution time series (March-October 2018) in a productive coastal pond. Seasonal shifts in protist populations, including parasitic Syndiniales, were documented during periods of higher primary productivity and increased summer temperature-driven stratification. Elevated concentrations of infected hosts and free-living parasite spores occurred at nearly monthly intervals in July, August, and September. We suggest intensifying stratification during this period correlated with the increased prevalence of dinoflagellates that were parasitized by Group II Syndiniales. Infections in some protist populations were comparable to previously reported large single-taxon dinoflagellate blooms. Infection dynamics in Salt Pond demonstrated the propagation of syndinian parasites through mixed protist assemblages and highlighted patterns of host/parasite interactions that better reflect many other marine environments where single taxon blooms are uncommon.


Asunto(s)
Dinoflagelados , Enfermedades Parasitarias , Dinoflagelados/genética , Ecosistema , Interacciones Huésped-Parásitos , Humanos , Estanques
10.
Environ Microbiol ; 24(7): 3051-3062, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35099107

RESUMEN

Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Supervivencia Celular , ADN , Recombinación Homóloga
11.
J Eukaryot Microbiol ; 69(5): e12912, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35325496

RESUMEN

Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end products to increase the host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host specificity and coevolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.


Asunto(s)
Cilióforos , Oxígeno , Anaerobiosis , Cilióforos/genética , Ecosistema , Filogenia , Simbiosis
12.
Environ Microbiol ; 23(6): 2747-2764, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32761757

RESUMEN

Genetic markers and geochemical assays of microbial nitrogen cycling processes, including autotrophic and heterotrophic denitrification, anammox, ammonia oxidation, and nitrite oxidation, were examined across the oxycline, suboxic, and anoxic zones of the Cariaco Basin, Venezuela. Ammonia and nitrite oxidation genes were expressed through the entire gradient. Transcripts associated with autotrophic and heterotrophic denitrifiers were mostly confined to the suboxic zone and below but were also present in particles in the oxycline. Anammox genes and transcripts were detected over a narrow depth range near the bottom of the suboxic zone and coincided with secondary NO2 - maxima and available NH4 + . Dissolved inorganic nitrogen (DIN) amendment incubations and comparisons between our sampling campaigns suggested that denitrifier activity may be closely coupled with NO3 - availability. Expression of denitrification genes at depths of high rates of chemoautotrophic carbon fixation and phylogenetic analyses of nitrogen cycling genes and transcripts indicated a diverse array of denitrifiers, including chemoautotrophs capable of using NO3 - to oxidize reduced sulfur species. Thus, results suggest that the Cariaco Basin nitrogen cycle is influenced by autotrophic carbon cycling in addition to organic matter oxidation and anammox.


Asunto(s)
Nitrógeno , Oxígeno , Reactores Biológicos , Crecimiento Quimioautotrófico , Desnitrificación , Ciclo del Nitrógeno , Oxidación-Reducción , Filogenia
13.
Appl Environ Microbiol ; 87(22): e0146021, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34495689

RESUMEN

The suitability of stable isotope probing (SIP) and Raman microspectroscopy to measure growth rates of heterotrophic bacteria at the single-cell level was evaluated. Label assimilation into Escherichia coli biomass during growth on a complex 13C-labeled carbon source was monitored in time course experiments. 13C incorporation into various biomolecules was measured by spectral "red shifts" of Raman-scattered emissions. The 13C- and 12C-isotopologues of the amino acid phenylalanine (Phe) proved to be quantitatively accurate reporter molecules of cellular isotopic fractional abundances (fcell). Values of fcell determined by Raman microspectroscopy and independently by isotope ratio mass spectrometry (IRMS) over a range of isotopic enrichments were statistically indistinguishable. Progressive labeling of Phe in E. coli cells among a range of 13C/12C organic substrate admixtures occurred predictably through time. The relative isotopologue abundances of Phe determined by Raman spectral analysis enabled the accurate calculation of bacterial growth rates as confirmed independently by optical density (OD) measurements. The results demonstrate that combining SIP and Raman microspectroscopy can be a powerful tool for studying bacterial growth at the single-cell level on defined or complex organic 13C carbon sources, even in mixed microbial assemblages. IMPORTANCE Population growth dynamics and individual cell growth rates are the ultimate expressions of a microorganism's fitness under its environmental conditions, whether natural or engineered. Natural habitats and many industrial settings harbor complex microbial assemblages. Their heterogeneity in growth responses to existing and changing conditions is often difficult to grasp by standard methodologies. In this proof-of-concept study, we tested whether Raman microspectroscopy can reliably quantify the assimilation of isotopically labeled nutrients into E. coli cells and enable the determination of individual growth rates among heterotrophic bacteria. Raman-derived growth rate estimates were statistically indistinguishable from those derived by standard optical density measurements of the same cultures. Raman microspectroscopy can also be combined with methods for phylogenetic identification. We report the development of Raman-based techniques that enable researchers to directly link genetic identity to functional traits and rate measurements of single cells within mixed microbial assemblages, currently a major technical challenge in microbiological research.


Asunto(s)
Escherichia coli , Marcaje Isotópico , Espectrometría Raman , Carbono , Escherichia coli/crecimiento & desarrollo , Filogenia , Prueba de Estudio Conceptual
14.
Appl Environ Microbiol ; 87(22): e0151921, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34469194

RESUMEN

International Ocean Discovery Program Expedition 360 drilled Hole U1473A at Atlantis Bank, an oceanic core complex on the Southwest Indian Ridge, with the aim of recovering representative samples of the lower oceanic crust. Recovered cores were primarily gabbro and olivine gabbro. These mineralogies may host serpentinization reactions that have the potential to support microbial life within the recovered rocks or at greater depths beneath Atlantis Bank. We quantified prokaryotic cells and analyzed microbial community composition for rock samples obtained from Hole U1473A and conducted nutrient addition experiments to assess if nutrient supply influences the composition of microbial communities. Microbial abundance was low (≤104 cells cm-3) but positively correlated with the presence of veins in rocks within some depth ranges. Due to the heterogeneous nature of the rocks downhole (alternating stretches of relatively unaltered gabbros and more significantly altered and fractured rocks), the strength of the positive correlations between rock characteristics and microbial abundances was weaker when all depths were considered. Microbial community diversity varied at each depth analyzed. Surprisingly, addition of simple organic acids, ammonium, phosphate, or ammonium plus phosphate in nutrient addition experiments did not affect microbial diversity or methane production in nutrient addition incubation cultures over 60 weeks. The work presented here from Site U1473A, which is representative of basement rock samples at ultraslow spreading ridges and the usually inaccessible lower oceanic crust, increases our understanding of microbial life present in this rarely studied environment and provides an analog for basement below ocean world systems such as Enceladus. IMPORTANCE The lower oceanic crust below the seafloor is one of the most poorly explored habitats on Earth. The rocks from the Southwest Indian Ridge (SWIR) are similar to rock environments on other ocean-bearing planets and moons. Studying this environment helps us increase our understanding of life in other subsurface rocky environments in our solar system that we do not yet have the capability to access. During an expedition to the SWIR, we drilled 780 m into lower oceanic crust and collected over 50 rock samples to count the number of resident microbes and determine who they are. We also selected some of these rocks for an experiment where we provided them with different nutrients to explore energy and carbon sources preferred for growth. We found that the number of resident microbes and community structure varied with depth. Additionally, added nutrients did not shape the microbial diversity in a predictable manner.


Asunto(s)
Expediciones , Microbiota , Agua de Mar/microbiología , Compuestos de Amonio , Océano Atlántico , Océano Índico , Fosfatos
15.
PLoS Biol ; 16(7): e2006333, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29965960

RESUMEN

Our current understanding of biology is heavily based on a small number of genetically tractable model organisms. Most eukaryotic phyla lack such experimental models, and this limits our ability to explore the molecular mechanisms that ultimately define their biology, ecology, and diversity. In particular, marine protists suffer from a paucity of model organisms despite playing critical roles in global nutrient cycles, food webs, and climate. To address this deficit, an initiative was launched in 2015 to foster the development of ecologically and taxonomically diverse marine protist genetic models. The development of new models faces many barriers, some technical and others institutional, and this often discourages the risky, long-term effort that may be required. To lower these barriers and tackle the complexity of this effort, a highly collaborative community-based approach was taken. Herein, we describe this approach, the advances achieved, and the lessons learned by participants in this novel community-based model for research.


Asunto(s)
Conducta Cooperativa , Modelos Teóricos , Organismos Acuáticos/fisiología , Eucariontes/clasificación , Filogenia , Transformación Genética
16.
Mar Drugs ; 19(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34436250

RESUMEN

Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/química , Hongos/metabolismo , Animales , Farmacorresistencia Microbiana , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
17.
Environ Microbiol ; 22(9): 4014-4031, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32779301

RESUMEN

We analysed a widely used barcode, the V9 region of the 18S rRNA gene, to study the effect of environmental conditions on the distribution of two related heterotrophic protistan lineages in marine plankton, kinetoplastids and diplonemids. We relied on a major published dataset (Tara Oceans) where samples from the mesopelagic zone were available from just 32 of 123 locations, and both groups are most abundant in this zone. To close sampling gaps and obtain more information from the deeper ocean, we collected 57 new samples targeting especially the mesopelagic zone. We sampled in three geographic regions: the Arctic, two depth transects in the Adriatic Sea, and the anoxic Cariaco Basin. In agreement with previous studies, both protist groups are most abundant and diverse in the mesopelagic zone. In addition to that, we found that their abundance, richness, and community structure also depend on geography, oxygen concentration, salinity, temperature, and other environmental variables reflecting the abundance of algae and nutrients. Both groups studied here demonstrated similar patterns, although some differences were also observed. Kinetoplastids and diplonemids prefer tropical regions and nutrient-rich conditions and avoid high oxygen concentration, high salinity, and high density of algae.


Asunto(s)
Euglenozoos/aislamiento & purificación , Océanos y Mares , Plancton/aislamiento & purificación , Agua de Mar/microbiología , Biodiversidad , Euglenozoos/clasificación , Euglenozoos/genética , Geografía , Plancton/clasificación , Plancton/genética , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Agua de Mar/química , Especificidad de la Especie
18.
Environ Microbiol ; 22(9): 3950-3967, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32743889

RESUMEN

The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.


Asunto(s)
Adaptación Fisiológica , Hongos/fisiología , Sedimentos Geológicos/microbiología , Micobioma/genética , Agua de Mar/microbiología , Biodiversidad , Ciclo del Carbono , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Sedimentos Geológicos/química , Océano Índico , Agua de Mar/química
19.
Nature ; 499(7457): 205-8, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23760485

RESUMEN

Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.


Asunto(s)
Sedimentos Geológicos/microbiología , Transcriptoma/genética , Anaerobiosis , Biomasa , División Celular/genética , Recuento de Colonia Microbiana , Reparación del ADN/genética , ADN Complementario/análisis , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Océanos y Mares , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Sulfatos/metabolismo , Microbiología del Agua
20.
Environ Microbiol ; 20(2): 693-712, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29160034

RESUMEN

Using the anoxic Cariaco Basin as a natural laboratory, particle association of bacterial and archaeal taxa was assessed by iTag sequencing and qPCR gene assays of samples spanning an oxic-anoxic-euxinic gradient. A total of 10%-12% of all bacterial and archaeal cells were found in the particle-associated (PA) fraction, operationally defined as prokaryotes captured on 2.7 µm membranes. Both redox condition and size fraction segregated bacterial taxa. Archaeal taxa varied according to redox conditions, but were similar between size fractions. Taxa putatively associated with chemoautotrophic sulfur oxidation and nitrification dominated the free-living (FL) fraction throughout the oxycline (< 1-120 µM O2 ) and upper anoxic layer. Bacteria in the oxycline's PA fraction included taxa known to be aerobic and anaerobic chemoorganotrophs. At shallow anoxic depths, PA taxa were primarily affiliated with anaerobic sulfate ( SO42-)-reducing lineages. PA fractions in the most sulfidic samples were dominated by taxa affiliated with CH4 oxidizing, fermenting and SO42- reducing lineages. Prevalence of particle-associated SO42--reducing taxa and abundant sulfur-oxidizing taxa in both size fractions across the oxic-anoxic interface is consistent with the cryptic sulfur cycling concept. Bacterial assemblage diversity in the PA fraction always exceeded the FL fraction except in the most oxic samples, whereas Archaeal diversity was not consistently different between size fractions. Our results suggest that these particle-associated and free-living bacterial assemblages are functionally different and that the interplay between particle microhabitats and surrounding geochemical regimes is a strong selective force shaping microbial communities throughout the water column.


Asunto(s)
Archaea , Bacterias , Agua de Mar/microbiología , Microbiología del Agua , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Crecimiento Quimioautotrófico , Metano/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Filogenia , Azufre/metabolismo , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA