Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Urol ; 211(2): 294-304, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37930962

RESUMEN

PURPOSE: Transcutaneous spinal cord stimulation (TSCS) is a novel neuromodulation modality developed to promote functional restoration in patients with neurological injury or disease. Previous pilot data suggest that lower urinary tract dysfunction (LUTD) due to stroke may be partially alleviated by TSCS. In this study, we examine the mechanism of this effect by evaluating bladder-related brain activity in patients before and after TSCS therapy and comparing it to healthy volunteers. MATERIALS AND METHODS: Patients who developed storage LUTD after a stroke and healthy volunteers without LUTD were recruited. Patients and healthy volunteers underwent simultaneous urodynamics and functional MRI. Patients then completed 24 biweekly sessions of TSCS and underwent another simultaneous urodynamics-functional MRI study. Clinical outcomes were assessed using validated questionnaires and voiding diary. RESULTS: Fifteen patients and 16 healthy volunteers completed the study. Following TSCS, patients exhibited increased blood-oxygen-level-dependent activity in areas including periaqueductal grey, the insula, the lateral prefrontal cortex, and motor cortex. Prior to TSCS therapy, healthy controls exhibited higher blood-oxygen-level-dependent activity in 17 regions, including multiple regions in the prefrontal cortex and basal ganglia. These differences were attenuated after TSCS with no frontal brain differences remaining between healthy volunteers and stroke participants who completed therapy. Neuroimaging changes were complemented by clinically significant improvements in questionnaire scores and voiding diary parameters. CONCLUSIONS: TSCS therapy modulated bladder-related brain activity, reducing differences between healthy volunteers and stroke patients with LUTD. These changes, alongside improved clinical outcomes, suggest TSCS as a promising approach for LUTD management.


Asunto(s)
Síntomas del Sistema Urinario Inferior , Estimulación de la Médula Espinal , Accidente Cerebrovascular , Humanos , Micción/fisiología , Proyectos Piloto , Síntomas del Sistema Urinario Inferior/etiología , Síntomas del Sistema Urinario Inferior/terapia , Síntomas del Sistema Urinario Inferior/diagnóstico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Encéfalo/diagnóstico por imagen , Oxígeno
2.
Biomed Eng Online ; 23(1): 38, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561821

RESUMEN

BACKGROUND: After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS: Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS: All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS: This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Resultado del Tratamiento , Caminata/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Marcha/fisiología , Sobrevivientes
3.
J Neurosci ; 40(13): 2633-2643, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31996455

RESUMEN

An increasing number of studies supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes functional recovery in humans with spinal cord injury (SCI). However, the neural mechanisms contributing to these effects remain poorly understood. Here we examined motor-evoked potentials in arm muscles elicited by cortical and subcortical stimulation of corticospinal axons before and after 20 min of TESS (30 Hz pulses with a 5 kHz carrier frequency) and sham-TESS applied between C5 and C6 spinous processes in males and females with and without chronic incomplete cervical SCI. The amplitude of subcortical, but not cortical, motor-evoked potentials increased in proximal and distal arm muscles for 75 min after TESS, but not sham-TESS, in control subjects and SCI participants, suggesting a subcortical origin for these effects. Intracortical inhibition, elicited by paired stimuli, increased after TESS in both groups. When TESS was applied without the 5 kHz carrier frequency both subcortical and cortical motor-evoked potentials were facilitated without changing intracortical inhibition, suggesting that the 5 kHz carrier frequency contributed to the cortical inhibitory effects. Hand and arm function improved largely when TESS was used with, compared with without, the 5 kHz carrier frequency. These novel observations demonstrate that TESS influences cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. We hypothesized that these parallel effects contribute to further the recovery of limb function following SCI.SIGNIFICANCE STATEMENT Accumulating evidence supports the view that transcutaneous electrical stimulation of the spinal cord (TESS) promotes recovery of function in humans with spinal cord injury (SCI). Here, we show that a single session of TESS over the cervical spinal cord in individuals with incomplete chronic cervical SCI influenced in parallel the excitability cortical and spinal networks, having an excitatory effect at the spinal level and an inhibitory effect at the cortical level. Importantly, these parallel physiological effects had an impact on the magnitude of improvements in voluntary motor output.


Asunto(s)
Corteza Cerebral/fisiopatología , Plasticidad Neuronal/fisiología , Cuadriplejía/terapia , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Estimulación de la Médula Espinal/métodos , Adulto , Corteza Cerebral/diagnóstico por imagen , Médula Cervical/diagnóstico por imagen , Médula Cervical/fisiopatología , Electromiografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Cuadriplejía/diagnóstico por imagen , Cuadriplejía/fisiopatología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
4.
J Neurophysiol ; 126(5): 1635-1641, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34644129

RESUMEN

In intact and spinal-injured anesthetized animals, stimulation levels that did not induce any visible muscle twitches were used to elicit motor evoked potentials (MEPs) of varying amplitude, reflecting the temporal and amplitude dynamics of the background excitability of spinal networks. To characterize the physiological excitability states of neuronal networks driving movement, we designed five experiments in awake rats chronically implanted with an epidural stimulating interface, with and without a spinal cord injury (SCI). First, an uninjured rat at rest underwent a series of single electrical pulses at sub-motor threshold intensity, which generated responses that were continuously recorded from flexor and extensor hindlimb muscles, showing an intrinsic patterned modulation of MEPs. Responses were recruited by increasing strengths of stimulation, and the amplitudes were moderately correlated between flexors and extensors. Next, after SCI, four awake rats at rest showed electrically induced MEPs, varying largely in amplitude, of both flexors and extensors that were mainly synchronously modulated. After full anesthesia, MEP amplitudes were largely reduced, although stimulation still generated random baseline changes, unveiling an intrinsic stochastic modulation. The present five cases demonstrate a methodology that can be feasibly replicated in a broader group of awake and behaving rats to further define experimental treatments involving neuroplasticity. Besides validating a new technology for a neural stimulating interface, the present data support the broader message that there is intrinsic patterned and stochastic modulation of baseline excitability reflecting the dynamics of physiological states of spinal networks.NEW & NOTEWORTHY Chronic implants of a new epidural stimulating interface trace dynamics of spinal excitability in awake rats, before and after injury. Motor evoked potentials induced by trains of pulses at sub-motor threshold intensity were continuously modulated in amplitude. Oscillatory patterns of amplitude modulation reduced with increasing strengths of stimulation and were replaced by an intrinsic stochastic tone under anesthesia. Variability of baseline excitability is a fundamental feature of spinal networks, affecting their responses to external input.


Asunto(s)
Potenciales Evocados Motores/fisiología , Red Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Estimulación de la Médula Espinal , Médula Espinal/fisiología , Anestesia , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Electromiografía , Ratas
5.
J Neurophysiol ; 126(6): 1843-1859, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669485

RESUMEN

Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.


Asunto(s)
Actividad Motora/fisiología , Rehabilitación Neurológica , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Estimulación de la Médula Espinal , Espacio Epidural , Humanos
6.
J Neurophysiol ; 126(3): 957-966, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406891

RESUMEN

Having observed that electrical spinal cord stimulation and training enabled four patients with paraplegia with motor complete paralysis to regain voluntary leg movement, the underlying mechanisms involved in forming the newly established supraspinal-spinal functional connectivity have become of great interest. van den Brand et al. (Science 336: 1182-1185, 2012) subsequently, demonstrated the recovery, in response to spinal electro-neuromodulation and locomotor training, of voluntary stepping of the lower limbs in rats that received a lesion that is assumed to eliminate all long-descending cortical axons that project to lumbosacral segments. Here, we used a similar spinal lesion in rats to eliminate long-descending axons to determine whether a novel, trained motor behavior triggered by a unique auditory cue learned before a spinal lesion, could recover after the lesion. Hindlimb stepping recovered 1 mo after the spinal injury, but only after 2 mo, the novel and unique audio-triggered behavior was recovered, meaning that not only was a novel connectivity formed but also further evidence suggested that this highly unique behavioral response was independent of the recovery of the circuitry that generated stepping. The unique features of the newly formed supraspinal-spinal connections that mediated the recovery of the trained behavior is consistent with a guidance mechanism(s) that are highly use dependent.NEW & NOTEWORTHY Electrical spinal cord stimulation has enabled patients with paraplegia to regain voluntary leg movement, and so the underlying mechanisms involved in this recovery are of great interest. Here, we demonstrate in rodents the recovery of trained motor behavior after a spinal lesion. Rodents were trained to kick their right hindlimb in response to an auditory cue. This behavior recovered 2 mo after the paralyzing spinal cord injury but only with the assistance of electrical spinal cord stimulation.


Asunto(s)
Aprendizaje , Paraplejía/fisiopatología , Estimulación de la Médula Espinal/métodos , Médula Espinal/fisiopatología , Animales , Axones/fisiología , Encéfalo/fisiopatología , Potenciales Evocados Motores , Miembro Posterior/inervación , Miembro Posterior/fisiopatología , Neuronas Motoras/fisiología , Movimiento , Paraplejía/terapia , Ratas , Ratas Sprague-Dawley
7.
J Neurophysiol ; 124(3): 774-780, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755339

RESUMEN

Respiratory dysfunction is one of the most debilitating effects of spinal cord injury (SCI) impacting the quality of life of patients and caregivers. In addition, breathing difficulties impact the rehabilitation routine a patient may potentially undergo. Transcutaneous electrical spinal cord neuromodulation (TESCoN) is a novel approach to reactivate and retrain spinal circuits after paralysis. We demonstrate that acute and chronic TESCoN therapy over the cervical spinal cord positively impacts the breathing and coughing ability in a patient with chronic tetraplegia. ln addition, we show that the improved breathing and coughing ability are not only observed in the presence of TESCoN but persisted for a few days after TESCoN was stopped.NEW & NOTEWORTHY Noninvasive spinal neuromodulation improves breathing and coughing in a patient with severe and complete tetraplegia.


Asunto(s)
Médula Cervical/lesiones , Tos , Cuadriplejía/terapia , Trastornos Respiratorios/terapia , Estimulación de la Médula Espinal , Adulto , Médula Cervical/fisiopatología , Enfermedad Crónica , Tos/fisiopatología , Humanos , Masculino , Cuadriplejía/complicaciones , Cuadriplejía/fisiopatología , Trastornos Respiratorios/etiología
8.
J Neurophysiol ; 124(5): 1469-1479, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966757

RESUMEN

c-Fos is used to identify system-wide neural activation with cellular resolution in vivo. However, c-Fos can only capture neural activation of one event. Targeted recombination in active populations (TRAP) allows the capture of two different c-Fos activation patterns in the same animal. So far, TRAP has only been used to examine brain circuits. This study uses TRAP to investigate spinal circuit activation during resting and stepping, giving novel insights of network activation during these events. The level of colabeled (c-Fos+ and TRAP+) neurons observed after performing two bouts of stepping suggests that there is a probabilistic-like phenomenon that can recruit many combinations of neural populations (synapses) when repetitively generating many step cycles. Between two 30-min bouts of stepping, each consisting of thousands of steps, only ∼20% of the neurons activated from the first bout of stepping were also activated by the second bout. We also show colabeling of interneurons that have been active during stepping and resting. The use of the FosTRAP methodology in the spinal cord provides a new tool to compare the engagement of different populations of spinal interneurons in vivo under different motor tasks or under different conditions.NEW & NOTEWORTHY The results are consistent with there being an extensive amount of redundancy among spinal locomotor circuits. Using the newly developed FosTRAP mouse model, only ∼20% of neurons that were active (labeled by Fos-linked tdTomato expression) during a first bout of 30-min stepping were also labeled for c-Fos during a second bout of stepping. This finding suggests variability of neural networks that enables selection of many combinations of neurons (synapses) when generating each step cycle.


Asunto(s)
Locomoción/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Animales , Femenino , Masculino , Ratones Transgénicos , Vías Nerviosas/fisiología , Neurofisiología/métodos , Proteínas Proto-Oncogénicas c-fos/análisis
9.
J Neurophysiol ; 122(2): 585-600, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30943092

RESUMEN

The precise location and functional organization of the spinal neuronal locomotor-related networks in adult mammals remain unclear. Our recent neurophysiological findings provided empirical evidence that the rostral lumbar spinal cord segments play a critical role in the initiation and generation of the rhythmic activation patterns necessary for hindlimb locomotion in adult spinal rats. Since added epidural stimulation at the S1 segments significantly enhanced the motor output generated by L2 stimulation, these data also suggested that the sacral spinal cord provides a strong facilitory influence in rhythm initiation and generation. However, whether L2 will initiate hindlimb locomotion in the absence of S1 segments, and whether S1 segments can facilitate locomotion in the absence of L2 segments remain unknown. Herein, adult rats received complete spinal cord transections at T8 and then at either L2 or S1. Rats with spinal cord transections at T8 and S1 remained capable of generating coordinated hindlimb locomotion when receiving epidural stimulation at L2 and when ensembles of locomotor related loadbearing input were present. In contrast, minimal locomotion was observed when S1 stimulation was delivered after spinal cord transections at T8 and L2. Results were similar when the nonspecific serotonergic agonists were administered. These results demonstrate in adult rats that rostral lumbar segments are essential for the regulation of hindlimb locomotor rhythmicity. In addition, the more caudal spinal networks alone cannot control locomotion in the absence of the rostral segments around L2 even when loadbearing rhythmic proprioceptive afferent input is imposed.NEW & NOTEWORTHY The exact location of the spinal neuronal locomotor-related networks in adult mammals remains unknown. The present data demonstrate that when the rostral lumbar spinal segments (~L2) are completely eliminated in thoracic spinal adult rats, hindlimb stepping is not possible with neurochemical modulation of the lumbosacral cord. In contrast, eliminating the sacral cord retains stepping ability. These observations highlight the importance of rostral lumbar segments in generating effective mammalian locomotion.


Asunto(s)
Conducta Animal/fisiología , Generadores de Patrones Centrales/fisiología , Electromiografía/métodos , Potenciales Evocados/fisiología , Miembro Posterior/fisiología , Locomoción/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiología , Animales , Fenómenos Biomecánicos , Estimulación Eléctrica , Espacio Epidural , Femenino , Miembro Posterior/fisiopatología , Vértebras Lumbares , Ratas , Ratas Sprague-Dawley , Sacro , Médula Espinal/fisiopatología , Vértebras Torácicas
11.
J Neurophysiol ; 119(4): 1521-1527, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361664

RESUMEN

The lower urinary tract (LUT) may be activated by spinal cord stimulation, but the physiological mapping characteristics of LUT activation with noninvasive transcutaneous spinal cord stimulation (TSCS) are not known. The effects of aging on the contractile properties of the detrusor are also not well understood. Therefore, TSCS was applied over the T10/T11 to L6/L7 spinous processes in adult ( n = 6) and aged ( n = 9) female rhesus macaques. A combination of urodynamic studies and electromyography recordings of the external urethral sphincter (EUS), external anal sphincter (EAS), and pelvic floor muscles was performed. Distinct functional maps were demonstrated for TSCS-evoked detrusor and urethral pressures and for the activation of the EUS, EAS, and pelvic floor muscles. The magnitude of responses for each peripheral target organ was dependent on TSCS location and strength. The strongest detrusor contraction was observed with TSCS at the L1/L2 site in adults and the L3/L4 site in aged subjects. TSCS-evoked bladder pressure at the L1/L2 site was significantly higher for the adults compared with the aged subjects ( P < 0.05). Cumulative normalized TSCS-evoked pressures, calculated for five consecutive sites between the T11/T12 and L3/L4 levels, were significantly lower for aged compared with adult subjects ( P < 0.05). The aged animals also showed a caudal shift for the TSCS site that generated the strongest detrusor contraction. We conclude that natural aging in rhesus macaques is associated with decreased detrusor contractility, a finding of significant translational research relevance as detrusor underactivity is a common occurrence with aging in humans. NEW & NOTEWORTHY Transcutaneous spinal cord stimulation (TSCS) was used to map lower urinary tract function in adult and aged rhesus macaques. Aging was associated with decreased peak pressure responses to TSCS, reduced cumulative normalized evoked bladder pressure responses, and a caudal shift for the site generating the strongest TSCS-induced detrusor contraction. We demonstrate the utility of TSCS as a new diagnostic tool for detrusor contractility assessments and conclude that aging is associated with decreased detrusor contractility in primates.


Asunto(s)
Envejecimiento/fisiología , Canal Anal/fisiología , Estimulación Eléctrica/métodos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Médula Espinal/fisiología , Uretra/fisiología , Urodinámica/fisiología , Factores de Edad , Canal Anal/fisiopatología , Animales , Electromiografía , Femenino , Macaca mulatta , Músculo Esquelético/fisiopatología , Diafragma Pélvico/fisiología , Uretra/fisiopatología
12.
J Neurosci ; 36(23): 6269-86, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277804

RESUMEN

UNLABELLED: Multiple neural and peripheral cell types rapidly respond to tissue damage after spinal cord injury to form a structurally and chemically inhibitory scar that limits axon regeneration. Astrocytes form an astroglial scar and produce chondroitin sulfate proteoglycans (CSPGs), activate microglia, and recruit blood-derived immune cells to the lesion for debris removal. One beneficial therapy, olfactory ensheathing cell (OEC) transplantation, results in functional improvements and promotes axon regeneration after spinal cord injury. The lack of an OEC-specific marker, however, has limited the investigation of mechanisms underlying their proregenerative effects. We compared the effects of enhanced green fluorescent protein-labeled fibroblast (FB) and OEC transplants acutely after a complete low-thoracic spinal cord transection in adult rats. We assessed the preservation of neurons and serotonergic axons, the levels of inhibitory CSPGs and myelin debris, and the extent of immune cell activation between 1 and 8 weeks postinjury. Our findings indicate that OECs survive longer than FBs post-transplantation, preserve axons and neurons, and reduce inhibitory molecules in the lesion core. Additionally, we show that OECs limit immune-cell activation and infiltration, whereas FBs alter astroglial scar formation and increase immune-cell infiltration and concomitant secondary tissue damage. Administration of cyclosporine-A to enhance graft survival demonstrated that immune suppression can augment OEC contact-mediated protection of axons and neurons during the first 2 weeks postinjury. Collectively, these data suggest that OECs have neuroprotective and immunomodulatory mechanisms that create a supportive environment for neuronal survival and axon regeneration after spinal cord injury. SIGNIFICANCE STATEMENT: Spinal cord injury creates physical and chemical barriers to axon regeneration. We used a complete spinal cord transection model and olfactory ensheathing cell (OEC) or fibroblast (FB; control) transplantation as a repair strategy. OECs, but not FBs, intermingled with astrocytes, facilitated astroglial scar border formation and sequestered invading peripheral cells. OECs attenuated immune cell infiltration, reduced secondary tissue damage, protected neurons and axons in the lesion core, and helped clear myelin debris. Immunosuppression enhanced survival of OECs and FBs, but only OEC transplantation promoted scaffold formation in the lesion site that facilitated axon regeneration and neuron preservation.


Asunto(s)
Trasplante de Células/métodos , Regeneración Nerviosa/fisiología , Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/fisiología , Traumatismos de la Médula Espinal/cirugía , Animales , Axones/efectos de los fármacos , Axones/fisiología , Células Cultivadas , Corteza Cerebral/patología , Ciclosporinas/farmacología , Ciclosporinas/uso terapéutico , Modelos Animales de Enfermedad , Fibroblastos/fisiología , Fibroblastos/trasplante , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vaina de Mielina/patología , Regeneración Nerviosa/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Infiltración Neutrófila/fisiología , Neuronas Receptoras Olfatorias/trasplante , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Serotonina/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología
13.
J Med Primatol ; 46(6): 359-363, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28727150

RESUMEN

A female rhesus macaque developed two episodes of generalized convulsions during transcutaneous spinal cord stimulation (TSCS) and urodynamic studies under ketamine anesthesia. The seizures took place in the absence of active TSCS and bladder pressure elevation. Ketamine anesthesia remains the primary risk factor for the convulsions during these experimental procedures.


Asunto(s)
Anestesia/efectos adversos , Anestésicos Disociativos/efectos adversos , Ketamina/efectos adversos , Macaca mulatta , Enfermedades de los Monos/inducido químicamente , Convulsiones/inducido químicamente , Animales , Femenino , Factores de Riesgo , Estimulación de la Médula Espinal , Vejiga Urinaria/diagnóstico por imagen
14.
J Neuroeng Rehabil ; 14(1): 22, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327161

RESUMEN

BACKGROUND: Activity-based therapy (ABT) for patients with spinal cord injury (SCI), which consists of repetitive use of muscles above and below the spinal lesion, improves locomotion and arm strength. Less data has been published regarding its effects on hand function. We sought to evaluate the effects of a weekly hand-focused therapy program using a novel handgrip device on grip strength and hand function in a SCI cohort. METHODS: Patients with SCI were enrolled in a weekly program that involved activities with the MediSens (Los Angeles, CA) handgrip. These included maximum voluntary contraction (MVC) and a tracking task that required each subject to adjust his/her grip strength according to a pattern displayed on a computer screen. For the latter, performance was measured as mean absolute accuracy (MAA). The Spinal Cord Independence Measure (SCIM) was used to measure each subject's independence prior to and after therapy. RESULTS: Seventeen patients completed the program with average participation duration of 21.3 weeks. The cohort included patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A (n = 12), AIS B (n = 1), AIS C (n = 2), and AIS D (n = 2) injuries. The average MVC for the cohort increased from 4.1 N to 21.2 N over 20 weeks, but did not reach statistical significance. The average MAA for the cohort increased from 9.01 to 21.7% at the end of the study (p = .02). The cohort's average SCIM at the end of the study was unchanged compared to baseline. CONCLUSIONS: A weekly handgrip-based ABT program is feasible and efficacious at increasing hand task performance in subjects with SCI.


Asunto(s)
Rehabilitación Neurológica/instrumentación , Dispositivos de Autoayuda , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Femenino , Fuerza de la Mano , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
15.
J Neurophysiol ; 116(1): 98-105, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075538

RESUMEN

We reported previously that both transcutaneous electrical spinal cord stimulation and direct pressure stimulation of the plantar surfaces of the feet can elicit rhythmic involuntary step-like movements in noninjured subjects with their legs in a gravity-neutral apparatus. The present experiments investigated the convergence of spinal and plantar pressure stimulation and voluntary effort in the activation of locomotor movements in uninjured subjects under full body weight support in a vertical position. For all conditions, leg movements were analyzed using electromyographic (EMG) recordings and optical motion capture of joint kinematics. Spinal cord stimulation elicited rhythmic hip and knee flexion movements accompanied by EMG bursting activity in the hamstrings of 6/6 subjects. Similarly, plantar stimulation induced bursting EMG activity in the ankle flexor and extensor muscles in 5/6 subjects. Moreover, the combination of spinal and plantar stimulation exhibited a synergistic effect in all six subjects, eliciting greater motor responses than either modality alone. While the motor responses to spinal vs. plantar stimulation seems to activate distinct but overlapping spinal neural networks, when engaged simultaneously, the stepping responses were functionally complementary. As observed during induced (involuntary) stepping, the most significant modulation of voluntary stepping occurred in response to the combination of spinal and plantar stimulation. In light of the known automaticity and plasticity of spinal networks in absence of supraspinal input, these findings support the hypothesis that spinal and plantar stimulation may be effective tools for enhancing the recovery of motor control in individuals with neurological injuries and disorders.


Asunto(s)
Pierna/fisiología , Locomoción/fisiología , Músculo Esquelético/fisiología , Sensación/fisiología , Médula Espinal/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Imagen Óptica , Estimulación Física , Presión , Estimulación Eléctrica Transcutánea del Nervio , Volición , Adulto Joven
16.
Muscle Nerve ; 53(2): 287-96, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26044200

RESUMEN

INTRODUCTION: Skeletal muscle oxidative capacity decreases and fatigability increases after spinal cord injury. Transcription factor peroxisome proliferator-activated receptor δ (PPARδ) promotes a more oxidative phenotype. METHODS: We asked whether PPARδ overexpression could ameliorate these deficits in the medial gastrocnemius of spinal cord transected (ST) adult mice. RESULTS: Time-to-peak tension and half-relaxation times were longer in PPARδ-Con and PPARδ-ST compared with littermate wild-type (WT) controls. Fatigue index was 50% higher in PPARδ-Con than WT-Con and 70% higher in the PPARδ-ST than WT-ST. There was an overall higher percent of darkly stained fibers for succinate dehydrogenase in both PPARδ groups. CONCLUSIONS: The results indicate a conversion toward slower, more oxidative, and less fatigable muscle properties with overexpression of PPARδ. Importantly, the elevated fatigue resistance was maintained after ST, suggesting that enhanced PPARδ expression, and possibly small molecule agonists, could ameliorate the increased fatigability routinely observed in chronically paralyzed muscles.


Asunto(s)
Músculo Esquelético/fisiopatología , PPAR alfa/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Peso Corporal/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fatiga Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/metabolismo , Tamaño de los Órganos/genética , PPAR alfa/genética , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Succinato Deshidrogenasa/metabolismo
17.
J Neurophysiol ; 113(9): 3386-96, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25695648

RESUMEN

The spinal cord contains the circuitry to control posture and locomotion after complete paralysis, and this circuitry can be enabled with epidural stimulation [electrical enabling motor control (eEmc)] and/or administration of pharmacological agents [pharmacological enabling motor control (fEmc)] when combined with motor training. We hypothesized that the characteristics of the spinally evoked potentials after chronic administration of both strychnine and quipazine under the influence of eEmc during standing and stepping can be used as biomarkers to predict successful motor performance. To test this hypothesis we trained rats to step bipedally for 7 wk after paralysis and characterized the motor potentials evoked in the soleus and tibialis anterior (TA) muscles with the rats in a non-weight-bearing position, standing and stepping. The middle responses (MRs) to spinally evoked stimuli were suppressed with either or both drugs when the rat was suspended, whereas the addition of either or both drugs resulted in an overall activation of the extensor muscles during stepping and/or standing and reduced the drag duration and cocontraction between the TA and soleus muscles during stepping. The administration of quipazine and strychnine in concert with eEmc and step training after injury resulted in larger-amplitude evoked potentials [MRs and late responses (LRs)] in flexors and extensors, with the LRs consisting of a more normal bursting pattern, i.e., randomly generated action potentials within the bursts. This pattern was linked to more successful standing and stepping. Thus it appears that selected features of the patterns of potentials evoked in specific muscles with stimulation can serve as effective biomarkers and predictors of motor performance.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Potenciales Evocados Motores/fisiología , Músculo Esquelético/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Electromiografía , Potenciales Evocados Motores/efectos de los fármacos , Femenino , Glicinérgicos/farmacología , Miembro Posterior/inervación , Quipazina/farmacología , Ratas , Ratas Sprague-Dawley , Agonistas de Receptores de Serotonina/farmacología , Estricnina/farmacología , Factores de Tiempo
18.
J Neurophysiol ; 113(3): 834-42, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25376784

RESUMEN

The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord injury.


Asunto(s)
Médula Espinal/fisiología , Caminata , Fenómenos Biomecánicos , Extremidades/inervación , Extremidades/fisiología , Humanos , Masculino , Equilibrio Postural , Estimulación Eléctrica Transcutánea del Nervio , Adulto Joven
19.
J Neurosci Res ; 93(8): 1229-39, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25789848

RESUMEN

UNLABELLED: The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem, we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-min bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week, for 7.5 weeks) or not step trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The numbers of activated cholinergic central canal cluster cells and partition neurons were higher in both step-trained and nontrained rats than in untreated rats and were higher in nontrained than in step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhances the excitability of a broader cholinergic interneuronal population than does step training. The numbers of activated interneurons in laminae II-VI of lumbar cross-sections were higher in both step-trained and nontrained rats than in untreated rats, and they were highest in step-trained rats. This finding suggests that this population of interneurons is responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping has an additive effect. The numbers of activated motoneurons of all size categories were higher in the step-trained group than in the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. SIGNIFICANCE: We identified neurons within the spinal cord networks that are activated during assisted stepping in paraplegic rats. We stimulated the spinal cord and administered a drug to help the rats step. One group was trained to step and another was not trained. We observed a lower percentage of activated neurons in specific spinal cord regions in trained rats than in nontrained rats after a 1-hr stepping bout, suggesting that step training reduces activation of some types of spinal neurons. This observation indicates that training makes the spinal networks more efficient and suggests a "learning" phenomenon in the spinal cord without any brain input.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Interneuronas/metabolismo , Actividad Motora/fisiología , Agonistas de Receptores de Serotonina/farmacología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Espacio Epidural , Femenino , Interneuronas/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos
20.
Brain ; 137(Pt 5): 1394-409, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24713270

RESUMEN

Previously, we reported that one individual who had a motor complete, but sensory incomplete spinal cord injury regained voluntary movement after 7 months of epidural stimulation and stand training. We presumed that the residual sensory pathways were critical in this recovery. However, we now report in three more individuals voluntary movement occurred with epidural stimulation immediately after implant even in two who were diagnosed with a motor and sensory complete lesion. We demonstrate that neuromodulating the spinal circuitry with epidural stimulation, enables completely paralysed individuals to process conceptual, auditory and visual input to regain relatively fine voluntary control of paralysed muscles. We show that neuromodulation of the sub-threshold motor state of excitability of the lumbosacral spinal networks was the key to recovery of intentional movement in four of four individuals diagnosed as having complete paralysis of the legs. We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis even years after injury.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Locomoción/fisiología , Parálisis , Modalidades de Fisioterapia , Médula Espinal/fisiología , Adulto , Enfermedad Crónica , Electromiografía , Potenciales Evocados Motores/fisiología , Prueba de Esfuerzo , Humanos , Masculino , Movimiento/fisiología , Músculo Esquelético/fisiopatología , Parálisis/patología , Parálisis/rehabilitación , Parálisis/terapia , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA