Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 18(11)2017 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-29113067

RESUMEN

DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.


Asunto(s)
Adaptación Fisiológica , Envejecimiento/genética , Inestabilidad Genómica , Envejecimiento/metabolismo , Animales , Daño del ADN , Humanos , Transducción de Señal
2.
Cell Rep ; 20(9): 2026-2043, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854356

RESUMEN

DNA damage causally contributes to aging and age-related diseases. Mutations in nucleotide excision repair (NER) genes cause highly complex congenital syndromes characterized by growth retardation, cancer susceptibility, and accelerated aging in humans. Orthologous mutations in Caenorhabditis elegans lead to growth delay, genome instability, and accelerated functional decline, thus allowing investigation of the consequences of persistent DNA damage during development and aging in a simple metazoan model. Here, we conducted proteome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV treatment to gain comprehensive insights into the full range of physiological adaptations to unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance program and implicate an autophagy-mediated proteostatic response. We assign central roles for the insulin-, EGF-, and AMPK-like signaling pathways in orchestrating the adaptive response to DNA damage. Our results provide insights into the DNA damage responses in the organismal context.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Reprogramación Celular , Daño del ADN , Transporte Activo de Núcleo Celular/efectos de la radiación , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Reprogramación Celular/efectos de la radiación , Reparación del ADN/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Transporte Iónico/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , Mutación/genética , Fosfoproteínas/metabolismo , Proteolisis/efectos de la radiación , Proteoma/metabolismo , Proteómica , Inanición/metabolismo , Transmisión Sináptica/efectos de la radiación , Transcriptoma/genética , Transcriptoma/efectos de la radiación , Rayos Ultravioleta , Regulación hacia Arriba/efectos de la radiación
3.
Biomolecules ; 5(3): 1855-69, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26287260

RESUMEN

DNA damage causally contributes to aging and cancer. Congenital defects in nucleotide excision repair (NER) lead to distinct cancer-prone and premature aging syndromes. The genetics of NER mutations have provided important insights into the distinct consequences of genome instability. Recent work in mice and C. elegans has shed new light on the mechanisms through which developing and aging animals respond to persistent DNA damage. The various NER mouse mutants have served as important disease models for Xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD), while the traceable genetics of C. elegans have allowed the mechanistic delineation of the distinct outcomes of genome instability in metazoan development and aging. Intriguingly, highly conserved longevity assurance mechanisms respond to transcription-blocking DNA lesions in mammals as well as in worms and counteract the detrimental consequences of persistent DNA damage. The insulin-like growth factor signaling (IIS) effector transcription factor DAF-16 could indeed overcome DNA damage-driven developmental growth delay and functional deterioration even when DNA damage persists. Longevity assurance mechanisms might thus delay DNA damage-driven aging by raising the threshold when accumulating DNA damage becomes detrimental for physiological tissue functioning.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Reparación del ADN/genética , Inestabilidad Genómica , Animales , Caenorhabditis elegans/fisiología , Daño del ADN/genética , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA