Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7973): 351-357, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495700

RESUMEN

Wildlife trade is a multibillion-dollar industry1 targeting a hyperdiversity of species2 and can contribute to major declines in abundance3. A key question is understanding the global hotspots of wildlife trade for phylogenetic (PD) and functional (FD) diversity, which underpin the conservation of evolutionary history4, ecological functions5 and ecosystem services benefiting humankind6. Using a global dataset of traded bird and mammal species, we identify that the highest levels of traded PD and FD are from tropical regions, where high numbers of evolutionary distinct and globally endangered species in trade occur. The standardized effect size (ses) of traded PD and FD also shows strong tropical epicentres, with additional hotspots of mammalian ses.PD in the eastern United States and ses.FD in Europe. Large-bodied, frugivorous and canopy-dwelling birds and large-bodied mammals are more likely to be traded whereas insectivorous birds and diurnally foraging mammals are less likely. Where trade drives localized extinctions3, our results suggest substantial losses of unique evolutionary lineages and functional traits, with possible cascading effects for communities and ecosystems5,7. Avoiding unsustainable exploitation and lost community integrity requires targeted conservation efforts, especially in hotspots of traded phylogenetic and functional diversity.


Asunto(s)
Biodiversidad , Aves , Comercio , Conservación de los Recursos Naturales , Mamíferos , Filogenia , Animales , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Especies en Peligro de Extinción , Europa (Continente) , Extinción Biológica , Mapeo Geográfico , Clima Tropical , Estados Unidos , Comercio/estadística & datos numéricos
2.
Nature ; 599(7886): 622-627, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759320

RESUMEN

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Asunto(s)
Cicer/genética , Variación Genética , Genoma de Planta/genética , Análisis de Secuencia de ADN , Productos Agrícolas/genética , Haplotipos/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
3.
Plant J ; 115(1): 68-80, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36970933

RESUMEN

Pod dehiscence is a major source of yield loss in legumes, which is exacerbated by aridity. Disruptive mutations in "Pod indehiscent 1" (PDH1), a pod sclerenchyma-specific lignin biosynthesis gene, has been linked to significant reductions in dehiscence in several legume species. We compared syntenic PDH1 regions across 12 legumes and two outgroups to uncover key historical evolutionary trends at this important locus. Our results clarified the extent to which PDH1 orthologs are present in legumes, showing the typical genomic context surrounding PDH1 has only arisen relatively recently in certain phaseoloid species (Vigna, Phaseolus, Glycine). The notable absence of PDH1 in Cajanus cajan may be a major contributor to its indehiscent phenotype compared with other phaseoloids. In addition, we identified a novel PDH1 ortholog in Vigna angularis and detected remarkable increases in PDH1 transcript abundance during Vigna unguiculata pod development. Investigation of the shared genomic context of PDH1 revealed it lies in a hotspot of transcription factors and signaling gene families that respond to abscisic acid and drought stress, which we hypothesize may be an additional factor influencing expression of PDH1 under specific environmental conditions. Our findings provide key insights into the evolutionary history of PDH1 and lay the foundation for optimizing the pod dehiscence role of PDH1 in major and understudied legume species.


Asunto(s)
Phaseolus , Vigna , Vigna/genética , Sitios de Carácter Cuantitativo , Genoma de Planta/genética , Phaseolus/genética , Genómica
4.
Emerg Infect Dis ; 30(5): 1009-1012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666632

RESUMEN

We report a cluster of serogroup B invasive meningococcal disease identified via genomic surveillance in older adults in England and describe the public health responses. Genomic surveillance is critical for supporting public health investigations and detecting the growing threat of serogroup B Neisseria meningitidis infections in older adults.


Asunto(s)
Infecciones Meningocócicas , Neisseria meningitidis Serogrupo B , Humanos , Inglaterra/epidemiología , Anciano , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Masculino , Anciano de 80 o más Años , Genómica/métodos , Femenino , Historia del Siglo XXI , Genoma Bacteriano , Persona de Mediana Edad
5.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34531040

RESUMEN

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Asunto(s)
Genoma de Planta , Fitomejoramiento , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Humanos , Fenotipo , Fitomejoramiento/métodos
6.
Am J Physiol Heart Circ Physiol ; 326(1): H110-H115, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921661

RESUMEN

Changes in endothelial function precede the development of cardiovascular disease (CVD). We have previously shown that age-related declines in endothelial function in women are due in part to a reduction in endothelial cell endothelin-B receptor (ETBR) protein expression. However, it is not known if ETBR protein expression changes with aging in men. The purpose of this study was to test the hypothesis that ETBR protein expression is attenuated in older men (OM) compared with younger men (YM). Primary endothelial cells were harvested from the antecubital vein of 14 OM (60 ± 6 yr; 26 ± 3 kg/m2) and 17 YM (24 ± 5 yr; 24 ± 2 kg/m2). Cells were stained with 4',6-diamidino-2-phenylindole, vascular endothelial cadherin, and ETBR. Images were quantified using immunocytochemistry. Endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Systolic BP was similar (OM, 123 ± 11 vs. YM, 122 ± 10 mmHg) whereas diastolic BP was higher in OM (OM, 77 ± 7 vs. YM, 70 ± 6 mmHg; P < 0.01). Total testosterone was lower in OM (OM, 6.28 ± 4.21 vs. YM, 9.10 ± 2.68 ng/mL; P = 0.03). As expected, FMD was lower in OM (OM, 3.85 ± 1.51 vs. YM, 6.40 ± 2.68%; P < 0.01). However, ETBR protein expression was similar between OM and YM (OM, 0.39 ± 0.17 vs. YM, 0.42 ± 0.17 AU; P = 0.66). These data suggest that ETBR protein expression is not altered with age in men. These findings contrast with our previous data in women and further support sex differences in the endothelin system.NEW & NOTEWORTHY Our laboratory has previously shown that age-related declines in endothelial function are associated with a reduction in endothelial cell ETBR protein expression in women. However, it is unclear if endothelial cell ETBR protein expression is reduced with aging in men. This study demonstrates that endothelial cell ETBR protein expression is preserved with aging in men, and provides additional evidence for sex differences in the endothelin system.


Asunto(s)
Envejecimiento , Células Endoteliales , Humanos , Femenino , Masculino , Anciano , Envejecimiento/fisiología , Brazo , Endotelinas , Endotelio Vascular
7.
Plant Biotechnol J ; 22(3): 544-554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37961986

RESUMEN

Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.


Asunto(s)
Edición Génica , Fitomejoramiento , Fitomejoramiento/métodos , Edición Génica/métodos , Plantas/genética , Inversión Cromosómica/genética , Genoma de Planta/genética
8.
Plant Biotechnol J ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875130

RESUMEN

Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.

9.
Plant Biotechnol J ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743906

RESUMEN

In plants, growth and defence are controlled by many molecular pathways that are antagonistic to one another. This results in a 'growth-defence trade-off', where plants temporarily reduce growth in response to pests or diseases. Due to this antagonism, genetic variants that improve resistance often reduce growth and vice versa. Therefore, in natural populations, the most disease resistant individuals are often the slowest growing. In crops, slow growth may translate into a yield penalty, but resistance is essential for protecting yield in the presence of disease. Therefore, plant breeders must balance these traits to ensure optimal yield potential and yield stability. In crops, both qualitative and quantitative disease resistance are often linked with genetic variants that cause yield penalties, but this is not always the case. Furthermore, both crop yield and disease resistance are complex traits influenced by many aspects of the plant's physiology, morphology and environment, and the relationship between the molecular growth-defence trade-off and disease resistance-yield antagonism is not well-understood. In this article, we highlight research from the last 2 years on the molecular mechanistic basis of the antagonism between defence and growth. We then discuss the interaction between disease resistance and crop yield from a breeding perspective, outlining the complexity and nuances of this relationship and where research can aid practical methods for simultaneous improvement of yield potential and disease resistance.

10.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607004

RESUMEN

SUMMARY: Genome-wide association studies (GWAS) excels at harnessing dense genomic variant datasets to identify candidate regions responsible for producing a given phenotype. However, GWAS and traditional fine-mapping methods do not provide insight into the complex local landscape of linkage that contains and has been shaped by the causal variant(s). Here, we present crosshap, an R package that performs robust density-based clustering of variants based on their linkage profiles to capture haplotype structures in a local genomic region of interest. Following this, crosshap is equipped with visualization tools for choosing optimal clustering parameters (ɛ) before producing an intuitive figure that provides an overview of the complex relationships between linked variants, haplotype combinations, phenotype, and metadata traits. AVAILABILITY AND IMPLEMENTATION: The crosshap package is freely available under the MIT license and can be downloaded directly from CRAN with R >4.0.0. The development version is available on GitHub alongside issue support (https://github.com/jacobimarsh/crosshap). Tutorial vignettes and documentation are available (https://jacobimarsh.github.io/crosshap/).


Asunto(s)
Documentación , Estudio de Asociación del Genoma Completo , Análisis por Conglomerados , Haplotipos , Fenotipo
11.
PLoS Pathog ; 18(9): e1010783, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121874

RESUMEN

The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.


Asunto(s)
Virus de la Viruela Vacuna , Evasión Inmune , Animales , Virus de la Viruela Vacuna/genética , Glicoproteínas , Ratones , Receptores de Quimiocina , Receptores de IgG , Virus Vaccinia , Virulencia
12.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R416-R426, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406845

RESUMEN

Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (ß = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (ß = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (ß = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.


Asunto(s)
Linfocitos T CD8-positivos , Leucocitos Mononucleares , Adulto , Humanos , Persona de Mediana Edad , Circulación Cerebrovascular/fisiología , Respiración , Contencion de la Respiración
13.
Glob Chang Biol ; 30(1): e16981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888836

RESUMEN

Indigenous Peoples are long-term custodians of their lands, but only recently are their contributions to conservation starting to be recognized in biodiversity policy and practice. Tropical forest loss and degradation are lower in Indigenous lands than unprotected areas, yet the role of Indigenous Peoples' Lands (IPL) in biodiversity conservation has not been properly assessed from regional to global scales. Using species distribution ranges of 11,872 tropical forest-dependent vertebrates to create area of habitat maps, we identified the overlap of these species ranges with IPL and then compared values inside and outside of IPL for species richness, extinction vulnerability, and range-size rarity. Of assessed vertebrates, at least 76.8% had range overlaps with IPL, on average overlapping ~25% of their ranges; at least 120 species were found only within IPL. Species richness within IPL was highest in South America, while IPL in Southeast Asia had highest extinction vulnerability, and IPL in Dominica and New Caledonia were important for range-size rarity. Most countries in the Americas had higher species richness within IPL than outside, whereas most countries in Asia had lower extinction vulnerability scores inside IPL and more countries in Africa and Asia had slightly higher range-size rarity in IPL. Our findings suggest that IPL provide critical support for tropical forest-dependent vertebrates, highlighting the need for greater inclusion of Indigenous Peoples in conservation target-setting and program implementation, and stronger upholding of Indigenous Peoples' rights in conservation policy.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Animales , Vertebrados , Biodiversidad , Pueblos Indígenas
14.
Glob Chang Biol ; 30(3): e17208, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38441414

RESUMEN

Substantial global restoration commitments are occurring alongside a rapid expansion in land-hungry tropical commodities, including to supply increasing demand for wood products. Future commercial tree plantations may deliver high timber yields, shrinking the footprint of production forestry, but there is an as-yet unquantified risk that plantations may expand into priority restoration areas, with marked environmental costs. Focusing on Brazil-a country of exceptional restoration importance and one of the largest tropical timber producers-we use random forest models and information on the economic, social, and spatial drivers of historic commercial tree plantation expansion to estimate and map the probability of future monoculture tree plantation expansion between 2020 and 2030. We then evaluate potential plantation-restoration conflicts and opportunities at national and biome-scales and under different future production and restoration pathways. Our simulations show that of 2.8 Mha of future plantation expansion (equivalent to plantation expansion 2010-2020), ~78,000 ha (3%) is forecast to occur in the top 1% of restoration priority areas for terrestrial vertebrates, with ~547,500 ha (20%) and ~1,300,000 ha (46%) in the top 10% and 30% of priority areas, respectively. Just ~459,000 ha (16%) of expansion is forecast within low-restoration areas (bottom 30% restoration priorities), and the first 1 Mha of plantation expansion is likely to have disproportionate impacts, with potential restoration-plantation overlap starkest in the Atlantic Forest but prominent in the Pampas and Cerrado as well. Our findings suggest that robust, coherent land-use policies must be deployed to ensure that significant trade-offs between restoration and production objectives are navigated, and that commodity expansion does not undermine the most tractable conservation gains under emerging global restoration agendas. They also highlight the potentially significant role an engaged forestry sector could play in improving biodiversity outcomes in restoration projects in Brazil, and presumably elsewhere.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Brasil , Agricultura Forestal , Probabilidad
15.
Transgenic Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851650

RESUMEN

Rhabdomyosarcoma (RMS) is a solid tumor whose metastatic progression can be accelerated through interleukin-4 receptor alpha (Il4ra) mediated interaction with normal muscle stem cells (satellite cells). To understand the function of Il4ra in this tumor initiation phase of RMS, we conditionally deleted Il4ra in genetically-engineered RMS mouse models. Nullizygosity of Il4ra altered the latency, site and/or stage distribution of RMS tumors compared to IL4RA intact models. Primary tumor cell cultures taken from the genetically-engineered models then used in orthotopic allografts further defined the interaction of satellite cells and RMS tumor cells in the context of tumor initiation: in alveolar rhabdomyosarcoma (ARMS), satellite cell co-injection was necessary for Il4ra null tumor cells engraftment, whereas in embryonal rhabdomyosarcoma (ERMS), satellite cell co-injection decreased latency of engraftment of Il4ra wildtype tumor cells but not Il4ra null tumor cells. When refocusing on Il4ra wildtype tumors by single cell sequencing and cytokine studies, we have uncovered a putative signaling interplay of Il4 from T-lymphocytes being received by Il4ra + rhabdomyosarcoma tumor cells, which in turn express Ccl2, the ligand for Ccr2 and Ccr5. Taken together, these results suggest that mutations imposed during tumor initiation have different effects than genetic or therapeutic intervention imposed once tumors are already formed. We also propose that CCL2 and its cognate receptors CCR2 and/or CCR5 are potential therapeutic targets in Il4ra mediated RMS progression.

16.
PLoS Biol ; 19(4): e3001153, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891583

RESUMEN

Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic "bottleneck" increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller's ratchet-the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller's ratchet is avoided in different eukaryotes.


Asunto(s)
Eucariontes/genética , Células Germinativas/metabolismo , Mutación/fisiología , Orgánulos/genética , Animales , Arabidopsis , ADN Mitocondrial/genética , Drosophila , Eucariontes/clasificación , Regulación del Desarrollo de la Expresión Génica , Especiación Genética , Mutación de Línea Germinal/fisiología , Humanos , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Modelos Genéticos , Mutagénesis/fisiología , Tasa de Mutación , Biogénesis de Organelos , Orgánulos/fisiología
17.
Conserv Biol ; 38(1): e14149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37424370

RESUMEN

Oil palm is a major driver of tropical deforestation. A key intervention proposed to reduce the footprint of oil palm is intensifying production to free up spare land for nature, yet the indirect land-use implications of intensification through market forces are poorly understood. We used a spatially explicit land-rent modeling framework to characterize the supply and demand of oil palm in Indonesia under multiple yield improvement and demand elasticity scenarios and explored how shifts in market equilibria alter projections of crop expansion. Oil palm supply was sensitive to crop prices and yield improvements. Across all our scenarios, intensification raised agricultural rents and lowered the effectiveness of reductions in crop expansion. Increased yields lowered oil palm prices, but these price-drops were not sufficient to prevent further cropland expansion from increased agricultural rents under a range of price elasticities of demand. Crucially, we found that agricultural intensification might only result in land being spared when the demand relationship was highly inelastic and crop prices were very low (i.e., a 70% price reduction). Under this scenario, the extent of land spared (∼0.32 million ha) was countered by the continued establishment of new plantations (∼1.04 million ha). Oil palm intensification in Indonesia could exacerbate current pressures on its imperiled biodiversity and should be deployed with stronger spatial planning and enforcement to prevent further cropland expansion.


Cambios en el uso de suelo causados por la reacción del mercado a la intensificación de la palma aceitera en Indonesia Resumen La palma aceitera es una de las principales causas de la deforestación. Una intervención importante propuesta para reducir la huella de esta palma es la intensificación de la producción para que el suelo sobrante sea usado por la naturaleza, pero se sabe muy poco sobre las implicaciones del uso indirecto de suelo de la intensificación a través de las fuerzas del mercado. Usamos un marco de modelos de renta de suelo espacialmente explícito para caracterizar la oferta y demanda de la palma aceitera en Indonesia bajo varios escenarios de mejoras en la producción y elasticidad de demandas y exploramos cómo los cambios en el equilibrio del mercado alteran las proyecciones de la expansión agrícola. La oferta de palma aceitera fue susceptible a los precios de los cultivos y a las mejoras en la producción. La intensificación elevó la renta agrícola y redujo la efectividad de la reducción de la expansión agrícola en todos nuestros escenarios. El aumento en la producción bajó los precios de la palma, pero estas caídas no fueron suficientes para evitar la expansión agrícola a partir de las rentas agrícolas elevadas bajo un rango de elasticidad de precios de demanda. Más importante, descubrimos que la intensificación agrícola puede sólo resultar en que sobre el suelo cuando la relación de demanda casi no sea elástica y los precios de las cosechas sean muy bajos (una reducción del 70% en los precios). Bajo este escenario, la extensión de suelo sobrante (∼0.32 millones de ha) fue contrarrestado por el establecimiento continuo de nuevos sembradíos (∼1.04 millones de ha). La intensificación de la palma aceitera en Indonesia podría agravar las presiones existentes sobre su biodiversidad en peligro y debería implementarse con una mayor planeación espacial y aplicación para prevenir una expansión agrícola superior.


Asunto(s)
Arecaceae , Conservación de los Recursos Naturales , Indonesia , Agricultura , Biodiversidad , Arecaceae/fisiología
18.
Nature ; 623(7985): 33-34, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880523
19.
Nature ; 562(7728): 526-531, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30333627

RESUMEN

The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset-accessible through the Beat AML data viewer (Vizome)-that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Genómica , Leucemia Mieloide Aguda/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Conjuntos de Datos como Asunto , Exoma/genética , Femenino , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Terapia Molecular Dirigida , Proteínas Nucleares/genética , Nucleofosmina , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Análisis de Secuencia de ARN , Factores de Empalme Serina-Arginina/genética
20.
Lung ; 202(1): 17-24, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38135857

RESUMEN

Chronic cough is characterized by a state of cough hypersensitivity. We analyze the process of transpiration, by which water appears to evaporate from laryngeal and tracheal mucus as from the surface of a leaf, as a potential cause of cough hypersensitivity. In this process, osmotic pressure differences form across mucus, pulling water toward the air, and preventing mucus dehydration. Recent research suggests that these osmotic differences grow on encounter with dry and dirty air, amplifying pressure on upper airway epithelia and initiating a cascade of biophysical events that potentially elevate levels of ATP, promote inflammation and acidity, threaten water condensation, and diminish mucus water permeability. Among consequences of this inflammatory cascade is tendency to cough. Studies of isotonic, hypotonic, and hypertonic aerosols targeted to the upper airways give insights to the nature of mucus transpiration and its relationship to a water layer that forms by condensation in the upper airways on exhalation. They also suggest that, while hypertonic NaCl and mannitol may provoke cough and bronchoconstriction, hypertonic salts with permeating anions and non-permeating cations may relieve these same upper respiratory dysfunctions. Understanding of mucus transpiration and its role in cough hypersensitivity can lead to new treatment modalities for chronic cough and other airway dysfunctions promoted by the breathing of dry and dirty air.


Asunto(s)
Tos Crónica , Hipersensibilidad , Humanos , Aerosoles y Gotitas Respiratorias , Tos/etiología , Moco , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA