Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574702

RESUMEN

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Asunto(s)
Células Cromafines , Vesículas de Núcleo Denso , Ratones , Animales , Sinaptotagminas/metabolismo , Exocitosis/fisiología , Membrana Celular/metabolismo , Células Cromafines/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Calcio/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(42): e2309843120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812725

RESUMEN

The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.


Asunto(s)
Dopamina , Vesículas Sinápticas , Dopamina/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/genética , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Axones/metabolismo , Mesencéfalo/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(20): e2118430119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35533272

RESUMEN

The assembly of functional neuronal circuits requires appropriate numbers of distinct classes of neurons, but the mechanisms through which their relative proportions are established remain poorly defined. Investigating the mouse striatum, we found that the two most prominent subtypes of striatal interneurons, parvalbumin-expressing (PV+) GABAergic and cholinergic (ChAT+) interneurons, undergo extensive programmed cell death between the first and second postnatal weeks. Remarkably, the survival of PV+ and ChAT+ interneurons is regulated by distinct mechanisms mediated by their specific afferent connectivity. While long-range cortical inputs control PV+ interneuron survival, ChAT+ interneuron survival is regulated by local input from the medium spiny neurons. Our results identify input-specific circuit mechanisms that operate during the period of programmed cell death to establish the final number of interneurons in nascent striatal networks.


Asunto(s)
Cuerpo Estriado , Interneuronas , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Parvalbúminas
4.
J Biol Chem ; 299(5): 104646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965620

RESUMEN

The solute carrier 17 family transports diverse organic anions using two distinct modes of coupling to a source of energy. Transporters that package glutamate and nucleotide into secretory vesicles for regulated release by exocytosis are driven by membrane potential but subject to allosteric regulation by H+ and Cl-. Other solute carrier 17 members including the lysosomal sialic acid exporter couple the flux of organic anion to cotransport of H+. To begin to understand how similar proteins can perform such different functions, we have studied Escherichia coli DgoT, a H+/galactonate cotransporter. A recent structure of DgoT showed many residues contacting D-galactonate, and we now find that they do not tolerate even conservative substitutions. In contrast, the closely related lysosomal H+/sialic acid cotransporter Sialin tolerates similar mutations, consistent with its recognition of diverse substrates with relatively low affinity. We also find that despite coupling to H+, DgoT transports more rapidly but with lower apparent affinity at high pH. Indeed, membrane potential can drive uptake, indicating electrogenic transport and suggesting a H+:galactonate stoichiometry >1. Located in a polar pocket of the N-terminal helical bundle, Asp46 and Glu133 are each required for net flux by DgoT, but the E133Q mutant exhibits robust exchange activity and rescues exchange by D46N, suggesting that these two residues operate in series to translocate protons. E133Q also shifts the pH sensitivity of exchange by DgoT, supporting a central role for the highly conserved TM4 glutamate in H+ coupling by DgoT.


Asunto(s)
Proteínas de Escherichia coli , Protones , Simportadores , Aniones/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Simportadores/genética , Simportadores/metabolismo
5.
Mov Disord ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946200

RESUMEN

Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
Proc Natl Acad Sci U S A ; 117(51): 32701-32710, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33273122

RESUMEN

α-Synuclein is expressed at high levels at presynaptic terminals, but defining its role in the regulation of neurotransmission under physiologically relevant conditions has proven elusive. We report that, in vivo, α-synuclein is responsible for the facilitation of dopamine release triggered by action potential bursts separated by short intervals (seconds) and a depression of release with longer intervals between bursts (minutes). These forms of presynaptic plasticity appear to be independent of the presence of ß- and γ-synucleins or effects on presynaptic calcium and are consistent with a role for synucleins in the enhancement of synaptic vesicle fusion and turnover. These results indicate that the presynaptic effects of α-synuclein depend on specific patterns of neuronal activity.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Señalización del Calcio , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Isoflurano/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neurotransmisores/metabolismo , Sustancia Negra/citología , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/genética , gamma-Sinucleína/metabolismo
7.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32398719

RESUMEN

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Asunto(s)
Ácido Glutámico , Área Tegmental Ventral , Animales , Neuronas Dopaminérgicas , Femenino , Ratones , Ratones Noqueados , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
8.
PLoS Biol ; 17(5): e3000260, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083648

RESUMEN

Members of the solute carrier 17 (SLC17) family use divergent mechanisms to concentrate organic anions. Membrane potential drives uptake of the principal excitatory neurotransmitter glutamate into synaptic vesicles, whereas closely related proteins use proton cotransport to drive efflux from the lysosome. To delineate the divergent features of ionic coupling by the SLC17 family, we determined the structure of Escherichia coli D-galactonate/H+ symporter D-galactonate transporter (DgoT) in 2 states: one open to the cytoplasmic side and the other open to the periplasmic side with substrate bound. The structures suggest a mechanism that couples H+ flux to substrate recognition. A transition in the role of H+ from flux coupling to allostery may confer regulation by trafficking to and from the plasma membrane.


Asunto(s)
Metabolismo Energético , Escherichia coli/metabolismo , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Protones , Azúcares Ácidos/metabolismo
9.
Biochemistry ; 60(32): 2463-2470, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34319067

RESUMEN

The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas de Transporte Vesicular de Glutamato/inmunología , Regulación Alostérica/inmunología , Animales , Cloruros/metabolismo , Epítopos/química , Epítopos/inmunología , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/inmunología , Proteína 1 de Transporte Vesicular de Glutamato/química , Proteína 1 de Transporte Vesicular de Glutamato/inmunología , Proteína 2 de Transporte Vesicular de Glutamato/química , Proteína 2 de Transporte Vesicular de Glutamato/inmunología , Proteínas de Transporte Vesicular de Glutamato/química , Xenopus laevis
10.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127471

RESUMEN

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Dopamina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Dopamina/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
11.
J Neurochem ; 150(5): 475-486, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31269263

RESUMEN

The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease (PD). In this review, we discuss recent results concerning its primary function, which appears to be on cell membranes. The pre-synaptic location of synuclein has suggested a role in neurotransmitter release and it apparently associates with synaptic vesicles because of their high curvature. Indeed, synuclein over-expression inhibits synaptic vesicle exocytosis. However, loss of synuclein has not yet been shown to have a major effect on synaptic transmission. Consistent with work showing that synuclein can promote as well as sense membrane curvature, recent analysis of synuclein triple knockout mice now shows that synuclein accelerates dilation of the exocytic fusion pore. This form of regulation affects primarily the release of slowly discharged lumenal cargo such as neural peptides, but presumably also contributes to maintenance of the release site. This article is part of the Special Issue "Synuclein".


Asunto(s)
Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/fisiología , Animales , Axones/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Exocitosis/fisiología , Humanos , Fusión de Membrana/fisiología , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/patología , Mutación Missense , Terminales Presinápticos/química , Dominios Proteicos , Pliegue de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , alfa-Sinucleína/química , alfa-Sinucleína/deficiencia , alfa-Sinucleína/genética
12.
J Neurosci ; 35(28): 10168-71, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26180193

RESUMEN

Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT: It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate.


Asunto(s)
Ácido Aspártico/metabolismo , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Ácido Aspártico/farmacología , Región CA1 Hipocampal/citología , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Técnicas In Vitro , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/genética
13.
J Neurosci ; 35(45): 14983-99, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558771

RESUMEN

The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT: Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Ritmo Circadiano/fisiología , Dopamina/biosíntesis , Discinesia Inducida por Medicamentos/metabolismo , Trastornos de la Destreza Motora/metabolismo , Trastornos Parkinsonianos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/prevención & control , Femenino , Levodopa/toxicidad , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Trastornos de la Destreza Motora/prevención & control , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/prevención & control
14.
J Biol Chem ; 290(37): 22325-36, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26126824

RESUMEN

Synaptic mitochondria are thought to be critical in supporting neuronal energy requirements at the synapse, and bioenergetic failure at the synapse may impair neural transmission and contribute to neurodegeneration. However, little is known about the energy requirements of synaptic vesicle release or whether these energy requirements go unmet in disease, primarily due to a lack of appropriate tools and sensitive assays. To determine the dependence of synaptic vesicle cycling on mitochondrially derived ATP levels, we developed two complementary assays sensitive to mitochondrially derived ATP in individual, living hippocampal boutons. The first is a functional assay for mitochondrially derived ATP that uses the extent of synaptic vesicle cycling as a surrogate for ATP level. The second uses ATP FRET sensors to directly measure ATP at the synapse. Using these assays, we show that endocytosis has high ATP requirements and that vesicle reacidification and exocytosis require comparatively little energy. We then show that to meet these energy needs, mitochondrially derived ATP is rapidly dispersed in axons, thereby maintaining near normal levels of ATP even in boutons lacking mitochondria. As a result, the capacity for synaptic vesicle cycling is similar in boutons without mitochondria as in those with mitochondria. Finally, we show that loss of a key respiratory subunit implicated in Leigh disease markedly decreases mitochondrially derived ATP levels in axons, thus inhibiting synaptic vesicle cycling. This proves that mitochondria-based energy failure can occur and be detected in individual neurons that have a genetic mitochondrial defect.


Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Adenosina Trifosfato/genética , Animales , Células Cultivadas , Endocitosis/fisiología , Exocitosis/fisiología , Hipocampo/citología , Mitocondrias/genética , Neuronas/citología , Ratas , Vesículas Sinápticas/genética
15.
PLoS Genet ; 9(9): e1003812, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086151

RESUMEN

The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/genética , Citosol/metabolismo , Exocitosis/genética , Hormonas Peptídicas/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Animales , Glucagón/genética , Glucagón/metabolismo , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Lisosomas , Redes y Vías Metabólicas , Ratones , Neuronas/metabolismo , Interferencia de ARN , Factor de Transcripción AP-1/genética
16.
Annu Rev Physiol ; 74: 225-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22054239

RESUMEN

Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but many neurons release multiple transmitters. Although the physiological role for corelease has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H(+) electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Corelease thus serves multiple roles in synaptic transmission.


Asunto(s)
Neurotransmisores/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/metabolismo , Animales , Aniones/metabolismo , Monoaminas Biogénicas/fisiología , Cationes/metabolismo , Cloruros/metabolismo , Cloruros/fisiología , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Humanos , Concentración de Iones de Hidrógeno , Neurotransmisores/metabolismo , Protones , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
17.
J Neurosci ; 34(43): 14304-17, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25339743

RESUMEN

Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.


Asunto(s)
Axones/metabolismo , Neuronas Dopaminérgicas/metabolismo , Dinaminas/deficiencia , Mesencéfalo/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Axones/patología , Neuronas Dopaminérgicas/patología , Dinaminas/genética , Femenino , Masculino , Potenciales de la Membrana/fisiología , Mesencéfalo/patología , Ratones , Ratones Noqueados , Mitocondrias/patología , Técnicas de Cultivo de Órganos
18.
Nature ; 462(7273): 651-5, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19915548

RESUMEN

Mechanical pain contributes to the morbidity associated with inflammation and trauma, but primary sensory neurons that convey the sensation of acute and persistent mechanical pain have not been identified. Dorsal root ganglion (DRG) neurons transmit sensory information to the spinal cord using the excitatory transmitter glutamate, a process that depends on glutamate transport into synaptic vesicles for regulated exocytotic release. Here we report that a small subset of cells in the DRG expresses the low abundance vesicular glutamate transporter VGLUT3 (also known as SLC17A8). In the dorsal horn of the spinal cord, these afferents project to lamina I and the innermost layer of lamina II, which has previously been implicated in persistent pain caused by injury. Because the different VGLUT isoforms generally have a non-redundant pattern of expression, we used Vglut3 knockout mice to assess the role of VGLUT3(+) primary afferents in the behavioural response to somatosensory input. The loss of VGLUT3 specifically impairs mechanical pain sensation, and in particular the mechanical hypersensitivity to normally innocuous stimuli that accompanies inflammation, nerve injury and trauma. Direct recording from VGLUT3(+) neurons in the DRG further identifies them as a poorly understood population of unmyelinated, low threshold mechanoreceptors (C-LTMRs). The analysis of Vglut3(-/-) mice now indicates a critical role for C-LTMRs in the mechanical hypersensitivity caused by injury.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ganglios Espinales/metabolismo , Hipersensibilidad/genética , Hipersensibilidad/fisiopatología , Mecanorreceptores/fisiología , Dolor/genética , Heridas y Lesiones/fisiopatología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Conducta Animal/fisiología , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
19.
J Neurosci ; 33(26): 10647-60, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804088

RESUMEN

The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.


Asunto(s)
Leucina/genética , Leucina/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Complejo 2 de Proteína Adaptadora/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Clatrina/metabolismo , Endocitosis/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/fisiología , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Ratas , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología
20.
Exp Neurol ; 373: 114668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147972

RESUMEN

The pathogenesis of degeneration in Parkinson's disease (PD) remains poorly understood but multiple lines of evidence have converged on the presynaptic protein α-synuclein (αsyn). αSyn has been shown to regulate several cellular processes, however, its normal function remains poorly understood. In this review, we will specifically focus on its role in exocytosis.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Exocitosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA