Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 583(7816): 375-378, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32632215

RESUMEN

The coexistence of superconducting and correlated insulating states in magic-angle twisted bilayer graphene1-11 prompts fascinating questions about their relationship. Independent control of the microscopic mechanisms that govern these phases could help uncover their individual roles and shed light on their intricate interplay. Here we report on direct tuning of electronic interactions in this system by changing the separation distance between the graphene and a metallic screening layer12,13. We observe quenching of correlated insulators in devices with screening layer separations that are smaller than the typical Wannier orbital size of 15 nanometres and with twist angles that deviate slightly from the magic angle of 1.10 ± 0.05 degrees. Upon extinction of the insulating orders, the vacated phase space is taken over by superconducting domes that feature critical temperatures comparable to those in devices with strong insulators. In addition, we find that insulators at half-filling can reappear in small out-of-plane magnetic fields of 0.4 tesla, giving rise to quantized Hall states with a Chern number of 2. Our study suggests re-examination of the often-assumed 'parent-and-child' relation between the insulating and superconducting phases in moiré graphene, and suggests a way of directly probing the microscopic mechanisms of superconductivity in strongly correlated systems.

2.
Nature ; 586(7827): 42-46, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999482

RESUMEN

Sensitive microwave detectors are essential in radioastronomy1, dark-matter axion searches2 and superconducting quantum information science3,4. The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response5-7. However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor-graphene-superconductor Josephson junction8-13 bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of 7 × 10-19 watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon14, reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.

3.
Nature ; 574(7780): 653-657, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666722

RESUMEN

Superconductivity can occur under conditions approaching broken-symmetry parent states1. In bilayer graphene, the twisting of one layer with respect to the other at 'magic' twist angles of around 1 degree leads to the emergence of ultra-flat moiré superlattice minibands. Such bands are a rich and highly tunable source of strong-correlation physics2-5, notably superconductivity, which emerges close to interaction-induced insulating states6,7. Here we report the fabrication of magic-angle twisted bilayer graphene devices with highly uniform twist angles. The reduction in twist-angle disorder reveals the presence of insulating states at all integer occupancies of the fourfold spin-valley degenerate flat conduction and valence bands-that is, at moiré band filling factors ν = 0, ±1, ±2, ±3. At ν ≈ -2, superconductivity is observed below critical temperatures of up to 3 kelvin. We also observe three new superconducting domes at much lower temperatures, close to the ν = 0 and ν = ±1 insulating states. Notably, at ν = ± 1 we find states with non-zero Chern numbers. For ν = -1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field greater than 3.6 tesla is applied, which is consistent with a field-driven phase transition. Our study shows that broken-symmetry states, interaction-driven insulators, orbital magnets, states with non-zero Chern numbers and superconducting domes occur frequently across a wide range of moiré flat band fillings, including close to charge neutrality. This study provides a more detailed view of the phenomenology of magic-angle twisted bilayer graphene, adding to our evolving understanding of its emergent properties.

4.
Nano Lett ; 24(15): 4478-4484, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584591

RESUMEN

We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.

5.
Nat Mater ; 22(3): 316-321, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36550373

RESUMEN

Magic-angle twisted trilayer graphene (MATTG) hosts flat electronic bands, and exhibits correlated quantum phases with electrical tunability. In this work, we demonstrate a spectroscopy technique that allows for dissociation of intertwined bands and quantification of the energy gaps and Chern numbers C of the correlated states in MATTG by driving band crossings between Dirac cone Landau levels and energy gaps in the flat bands. We uncover hard correlated gaps with C = 0 at integer moiré unit cell fillings of ν = 2 and 3 and reveal charge density wave states originating from van Hove singularities at fractional fillings ν = 5/3 and 11/3. In addition, we demonstrate displacement-field-driven first-order phase transitions at charge neutrality and ν = 2, which are consistent with a theoretical strong-coupling analysis, implying C2T symmetry breaking. Overall, these properties establish a diverse electrically tunable phase diagram of MATTG and provide an avenue for investigating other related systems hosting both steep and flat bands.

6.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301893

RESUMEN

Moiré superlattices in two-dimensional van der Waals heterostructures provide an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has made this moiré system one of the most renowned condensed matter platforms. So far studies of tBLG have been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 ∼ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θm2 ∼ 0.5°, which cannot be explained without considering electron-election interactions. With high magnetic field magnetotransport measurements we further reveal an energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band gaps. The connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.

7.
Nano Lett ; 22(16): 6465-6470, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35917225

RESUMEN

The allegedly unconventional superconducting phase of magic-angle twisted bilayer graphene (MATBG) has been predicted to possess extraordinary thermal properties, as it is formed from a highly diluted electron ensemble with a record-low carrier density (n) of ∼1011 cm-2 and electronic heat capacity (Ce) of <100kB. While these attributes position MATBG as a ground-breaking material platform for revolutionary calorimetric applications, these properties have so far not been experimentally shown. Here, we reveal the thermal properties of superconducting MATBG by monitoring its temperature dependent critical current (Ic) under continuous laser heating at 1550 nm. From the bolometric effect, we extract the temperature dependence of the electronic thermal conductance (Gth), which has a value of Gth = 0.2 pW/K at 35 mK and in the low temperature limit is consistent with a power law dependence, as expected for nodal superconductors. Our work lays the foundation for future thermal transport studies on this system.

8.
Phys Rev Lett ; 129(7): 076401, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018703

RESUMEN

Twisted bilayer graphene (TBG) is remarkable for its topological flat bands, which drive strongly interacting physics at integer fillings, and its simple theoretical description facilitated by the Bistritzer-MacDonald Hamiltonian, a continuum model coupling two Dirac fermions. Because of the large moiré unit cell, TBG offers the unprecedented opportunity to observe reentrant Hofstadter phases in laboratory-strength magnetic fields near 25 T. This Letter is devoted to magic angle TBG at 2π flux where the magnetic translation group commutes. We use a newly developed gauge-invariant formalism to determine the exact single-particle band structure and topology. We find that the characteristic TBG flat bands reemerge at 2π flux, but, due to the magnetic field breaking C_{2z}T, they split and acquire Chern number ±1. We show that reentrant correlated insulating states appear at 2π flux driven by the Coulomb interaction at integer fillings, and we predict the characteristic Landau fans from their excitation spectrum.

9.
Phys Rev Lett ; 128(21): 217701, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35687461

RESUMEN

The discovery of flat bands with nontrivial band topology in magic-angle twisted bilayer graphene (MATBG) has provided a unique platform to study strongly correlated phenomena including superconductivity, correlated insulators, Chern insulators, and magnetism. A fundamental feature of the MATBG, so far unexplored, is its high magnetic field Hofstadter spectrum. Here, we report on a detailed magnetotransport study of a MATBG device in external magnetic fields of up to B=31 T, corresponding to one magnetic flux quantum per moiré unit cell Φ_{0}. At Φ_{0}, we observe reentrant correlated insulators at a flat band filling factors of ν=+2 and of ν=+3, and interaction-driven Fermi-surface reconstructions at other fillings, which are identified by new sets of Landau levels originating from these. These experimental observations are supplemented by theoretical work that predicts a new set of eight well-isolated flat bands at Φ_{0}, of comparable band width, but with different topology than in zero field. Overall, our magnetotransport data reveal a qualitatively new Hofstadter spectrum in MATBG, which arises due to the strong electronic correlations in the reentrant flat bands.

10.
Nano Lett ; 21(12): 5330-5337, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101476

RESUMEN

Heat capacity is an invaluable quantity in condensed matter physics and yet has been completely inaccessible in two-dimensional (2D) van der Waals (vdW) materials, owing to their ultrafast thermal relaxation times and the lack of suitable nanoscale thermometers. Here, we demonstrate a novel thermal relaxation calorimetry scheme that allows the first measurements of the electronic heat capacity of graphene. It is enabled by combining a radio frequency Johnson noise thermometer, which can measure the electronic temperature with a sensitivity of ∼20 mK/Hz1/2, and a photomixed optical heater that modulates Te with a frequency of up to Ω = 0.2 THz. This allows record sensitive measurements of the electronic heat capacity Ce < 10 -19 J/K and the fastest measurement of electronic thermal relaxation time τe < 10 -12 s yet achieved by a calorimeter. These features advance heat capacity metrology into the realm of nanoscale and low-dimensional systems and provide an avenue for the investigation of their thermodynamic quantities.

11.
Phys Rev Lett ; 127(19): 197701, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797145

RESUMEN

The discovery of magic angle twisted bilayer graphene has unveiled a rich variety of superconducting, magnetic, and topologically nontrivial phases. Here, we show that the zero-field states at odd integer filling factors in h-BN nonaligned devices are consistent with symmetry broken Chern insulators, as is evidenced by the observation of the anomalous Hall effect near moiré cell filling factor ν=+1. The corresponding Chern insulator has a Chern number C=±1 and a relatively high Curie temperature of T_{c}≈4.5 K. In a perpendicular magnetic field above B>0.5 T we observe a transition of the ν=+1 Chern insulator from Chern number C=±1 to C=3, characterized by a quantized Hall plateau with R_{yx}=h/3e^{2}. These observations demonstrate that interaction-induced symmetry breaking leads to zero-field ground states that include almost degenerate and closely competing Chern insulators, and that states with larger Chern numbers couple most strongly to the B field. In addition, the device reveals strong superconducting phases with critical temperatures of up to T_{c}≈3.5 K. By providing the first demonstration of a system that allows gate-induced transitions between magnetic and superconducting phases, our observations mark a major milestone in the creation of a new generation of quantum electronics.

12.
Nano Lett ; 20(10): 7152-7158, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32915581

RESUMEN

We report on the observation of photogalvanic effects in tBLG with a twist angle of 0.6°. We show that excitation of the tBLG bulk causes a photocurrent, whose sign and magnitude are controlled by the orientation of the radiation electric field and the photon helicity. The observed photocurrent provides evidence for the reduction of the point group symmetry in low twist-angle tBLG to the lowest possible one. The developed theory shows that the current is formed by asymmetric scattering in gyrotropic tBLG. We also detected the photogalvanic current formed in the vicinity of the edges. For both bulk and edge photocurrents, we demonstrate the emergence of pronounced oscillations upon variation of the gate voltage. The gate voltages associated with the oscillations correlate with peaks in resistance measurements. These are well explained by interband transitions between a multitude of isolated bands in tBLG.

13.
Nano Lett ; 20(3): 1992-1999, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053384

RESUMEN

Defect centers in two-dimensional hexagonal boron nitride (hBN) are drawing attention as single-photon emitters with high photostability at room temperature. With their ultrahigh photon-stability, hBN single-photon emitters are promising for new applications in quantum technologies and for 2D-material based optoelectronics. Here, we control the emission rate of hBN-defects by coupling to resonant plasmonic nanocavities. By deterministic control of the antenna, we acquire high-resolution emission maps of the single hBN-defects. Using time-gating, we can discriminate the hBN-defect emission from the antenna luminescence. We observe sharp dips (40 nm fwhm) in emission, together with a reduction in luminescence lifetime. Comparing with finite-difference time-domain simulations, we conclude that both radiative and nonradiative rates are enhanced, effectively reducing the quantum efficiency. Also, the large refractive index of hBN largely screens off the local antenna field enhancement. Finally, based on the insight gained we propose a close-contact design for an order of magnitude brighter hBN single-photon emission.

14.
Nano Lett ; 20(5): 3459-3464, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32315186

RESUMEN

Because of the ultralow photon energies at mid-infrared and terahertz frequencies, in these bands photodetectors are notoriously underdeveloped, and broadband single photon detectors (SPDs) are nonexistent. Advanced SPDs exploit thermal effects in nanostructured superconductors, and their performance is currently limited to the more energetic near-infrared photons due to their high electronic heat capacity. Here, we demonstrate a superconducting magic-angle bilayer graphene (MAG) device that is theoretically capable of detecting single photons of ultralow energies by utilizing its record-low heat capacity and sharp superconducting transition. We theoretically quantify its calorimetric photoresponse and estimate its detection limits. This device allows the detection of ultrabroad range single photons from the visible to sub-terahertz with a response time around 4 ns and energy resolution better than 1 THz. These attributes position MAG as an exceptional material for long-wavelength single photon sensing, which could revolutionize such disparate fields as quantum information processing and radio astronomy.

15.
Nano Lett ; 18(1): 460-466, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29268017

RESUMEN

Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electrochemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new heterointerface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density >5 × 1013 cm2 with mobility >103 cm2/(V s) in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.

16.
Nano Lett ; 18(2): 934-940, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29337567

RESUMEN

Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

17.
Nano Lett ; 15(11): 7288-93, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26372880

RESUMEN

Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers.

18.
Sci Adv ; 10(38): eadp3725, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39292783

RESUMEN

The moiré superconductor magic-angle twisted bilayer graphene (MATBG) shows exceptional properties, with an electron (hole) ensemble of only ~1011 carriers per square centimeter, which is five orders of magnitude lower than traditional superconductors (SCs). This results in an ultralow electronic heat capacity and a large kinetic inductance of this truly two-dimensional SC, providing record-breaking parameters for quantum sensing applications, specifically thermal sensing and single-photon detection. To fully exploit these unique superconducting properties for quantum sensing, here, we demonstrate a proof-of-principle experiment to detect single near-infrared photons by voltage biasing an MATBG device near its superconducting phase transition. We observe complete destruction of the SC state upon absorption of a single infrared photon even in a 16-square micrometer device, showcasing exceptional sensitivity. Our work offers insights into the MATBG-photon interaction and demonstrates pathways to use moiré superconductors as an exciting platform for revolutionary quantum devices and sensors.

19.
Sci Adv ; 10(6): eadj1361, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335282

RESUMEN

Understanding electron-phonon interactions is fundamentally important and has crucial implications for device applications. However, in twisted bilayer graphene near the magic angle, this understanding is currently lacking. Here, we study electron-phonon coupling using time- and frequency-resolved photovoltage measurements as direct and complementary probes of phonon-mediated hot-electron cooling. We find a remarkable speedup in cooling of twisted bilayer graphene near the magic angle: The cooling time is a few picoseconds from room temperature down to 5 kelvin, whereas in pristine bilayer graphene, cooling to phonons becomes much slower for lower temperatures. Our experimental and theoretical analysis indicates that this ultrafast cooling is a combined effect of superlattice formation with low-energy moiré phonons, spatially compressed electronic Wannier orbitals, and a reduced superlattice Brillouin zone. This enables efficient electron-phonon Umklapp scattering that overcomes electron-phonon momentum mismatch. These results establish twist angle as an effective way to control energy relaxation and electronic heat flow.

20.
Commun Phys ; 6(1): 344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665414

RESUMEN

Traditional Joule dissipation omnipresent in today's electronic devices is well understood while the energy loss of the strongly interacting electron systems remains largely unexplored. Twisted bilayer graphene (tBLG) is a host to interaction-driven correlated insulating phases, when the relative rotation is close to the magic angle (1.08∘). We report on low-temperature (5K) nanomechanical energy dissipation of tBLG measured by pendulum atomic force microscopy (p-AFM). The ultrasensitive cantilever tip acting as an oscillating gate over the quantum device shows dissipation peaks attributed to different fractional fillings of the flat energy bands. Local detection allows to determine the twist angle and spatially resolved dissipation images showed the existence of hundred-nanometer domains of different doping. Application of magnetic fields provoked strong oscillations of the dissipation signal at 3/4 band filling, identified in analogy to Aharonov-Bohm oscillations, a wavefunction interference present between domains of different doping and a signature of orbital ferromagnetism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA