Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(2): 417-429.e10, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625056

RESUMEN

Antibodies to the hemagglutinin (HA) and neuraminidase (NA) glycoproteins are the major mediators of protection against influenza virus infection. Here, we report that current influenza vaccines poorly display key NA epitopes and rarely induce NA-reactive B cells. Conversely, influenza virus infection induces NA-reactive B cells at a frequency that approaches (H1N1) or exceeds (H3N2) that of HA-reactive B cells. NA-reactive antibodies display broad binding activity spanning the entire history of influenza A virus circulation in humans, including the original pandemic strains of both H1N1 and H3N2 subtypes. The antibodies robustly inhibit the enzymatic activity of NA, including oseltamivir-resistant variants, and provide robust prophylactic protection, including against avian H5N1 viruses, in vivo. When used therapeutically, NA-reactive antibodies protected mice from lethal influenza virus challenge even 48 hr post infection. These findings strongly suggest that influenza vaccines should be optimized to improve targeting of NA for durable and broad protection against divergent influenza strains.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Gripe Humana/patología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Animales , Aves , Reacciones Cruzadas , Epítopos/inmunología , Femenino , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control
2.
Clin Infect Dis ; 71(12): 3096-3102, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31840159

RESUMEN

BACKGROUND: Antibodies that inhibit hemagglutination have long been considered a correlate of protection against influenza, but these antibodies are only a subset of potentially protective antibodies. Neutralizing and neuraminidase antibodies may also contribute to protection, but data on their associations with protection are limited. METHODS: We measured preoutbreak hemagglutinin pseudovirus neutralization (PVN) and neuraminidase inhibition (NAI) antibody titers in unvaccinated military recruits who experienced an H3N2 influenza outbreak during training. We conducted a case-control study to investigate the association between titers and protection against influenza illness or H3N2-associated pneumonia using logistic regression. RESULTS: With every 2-fold increase in PVN titer, the odds of medically attended polymerase chain reaction-confirmed H3N2 infection (H3N2+) decreased by 41% (odds ratio [OR], 0.59; 95% confidence interval [CI], .45 to .77; P < .001). Among those who were H3N2+, the odds for pneumonia decreased by 52% (OR, 0.48; CI, .25 to .91; P = .0249). With every 2-fold increase in NAI titer, the odds of medically attended H3N2 infection decreased by 32% (OR, 0.68; 95% CI, .53 to .87; P = .0028), but there was no association between NAI titers and H3N2-associated pneumonia. There was also no synergistic effect of PVN and NAI antibodies. CONCLUSIONS: PVN and NAI titers were independently associated with reduced risk of influenza illness. NAI titers associated with protection had greater breadth of reactivity to drifted strains than PVN titers. These findings show that PVN and NAI titers are valuable biomarkers for assessing the odds of influenza infection.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Personal Militar , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Estudios de Casos y Controles , Brotes de Enfermedades , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Neuraminidasa , Estaciones del Año
3.
J Infect Dis ; 219(Suppl_1): S75-S80, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30715357

RESUMEN

For 50 years it has been known that antibodies to neuraminidase (NA) protect against infection during seasonal and pandemic influenza outbreaks. However, NA is largely ignored in the formulation and standardization of our current influenza vaccines. There are a number of factors that contributed to this antigen being forgotten, including the lack of an easily performed test to measure NA antibody. With the availability of that test, it has been possible to show its independent contribution to protection in various situations. The challenge now is to make it possible to include known amounts of NA in investigational vaccines or to routinely measure NA content in licensed vaccines. Vaccines containing optimal amounts of NA may be particularly useful when there are antigenic changes, either drift or shift, in the hemagglutinin because NA immunity offers broad protection. It is now time to remember the NA as we work toward improved influenza vaccines.


Asunto(s)
Antígenos de Superficie/inmunología , Antígenos Virales/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Pandemias/prevención & control , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Antígenos de Superficie/genética , Antígenos Virales/genética , Epítopos/inmunología , Flujo Genético , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/virología , Ratones , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Vacunación
4.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167344

RESUMEN

The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , China , Modelos Animales de Enfermedad , Perros , Femenino , Células HEK293 , Humanos , Subtipo H7N9 del Virus de la Influenza A , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Virus Reordenados
5.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807224

RESUMEN

Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE: Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U.S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health.


Asunto(s)
Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Receptores Virales/metabolismo , Acoplamiento Viral , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Variación Antigénica , Antígenos Virales/genética , Antígenos Virales/inmunología , Epítopos/genética , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Mutación , Infecciones por Orthomyxoviridae/metabolismo , Fenotipo
6.
J Proteome Res ; 16(9): 3287-3297, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28745058

RESUMEN

Susceptibility to influenza A virus is determined by a balance of viral and host factors. The genetic background of the host contributes to the severity of disease, but the influenza-related proteomes of cells from different individuals have not been compared. We used high-resolution mass spectrometry to identify proteins in normal human bronchial epithelial (NHBE) cells isolated from three different donors. Infection of each NHBE cell culture with influenza A/California/07/2009 (H1N1) resulted in expression of viral proteins and a variety of host proteins, including interferons, interferon-stimulated genes, and secreted chemokines/cytokines. The expression level of viral proteins corresponded to the level of host proteins that support influenza infection (i.e., pro-viral proteins); however, production of infectious virus was inversely related to the levels of antiviral proteins, suggesting that a balance of pro-viral proteins and the antiviral response controls virus replication. In summary, our results demonstrate that expression levels of pro-viral as well as antiviral factors are different for each donor and suggest that relative quantitation of these factors may provide a way to identify individuals or population groups who are susceptible to severe influenza disease.


Asunto(s)
Células Epiteliales/metabolismo , Interacciones Huésped-Patógeno , Subtipo H1N1 del Virus de la Influenza A/genética , Proteoma/genética , Proteínas Virales/genética , Citocinas/genética , Citocinas/inmunología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/inmunología , Interferones/genética , Interferones/inmunología , Metalotioneína/genética , Metalotioneína/inmunología , Anotación de Secuencia Molecular , Cultivo Primario de Células , Proteoma/inmunología , Proteómica/instrumentación , Proteómica/métodos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Carga Viral , Proteínas Virales/metabolismo
7.
Clin Infect Dis ; 65(10): 1644-1651, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29020179

RESUMEN

BACKGROUND: Antigenically drifted A(H3N2) viruses circulated extensively during the 2014-2015 influenza season. Vaccine effectiveness (VE) was low and not significant among outpatients but in a hospitalized population was 43%. At least one study paradoxically observed increased A(H3N2) infection among those vaccinated 3 consecutive years. METHODS: We followed a cohort of 1341 individuals from 340 households. VE against laboratory-confirmed influenza was estimated. Hemagglutination-inhibition and neuraminidase-inhibition antibody titers were determined in subjects ≥13 years. RESULTS: Influenza A(H3N2) was identified in 166 (12%) individuals and B(Yamagata) in 34 (2%). VE against A(H3N2) was -3% (95% confidence interval [CI]: -55%, 32%) and similarly ineffective between age groups; increased risk of infection was not observed among those vaccinated in 2 or 3 previous years. VE against influenza B(Yamagata) was 57% (95% CI: -3%, 82%) but only significantly protective in children <9 years (87% [95% CI: 43%, 97%]). Less than 20% of older children and adults had ≥4-fold antibody titer rise against influenza A(H3N2) and B antigens following vaccination; responses were surprisingly similar for antigens included in the vaccine and those similar to circulating viruses. Antibody against A/Hong Kong/4801/14, similar to circulating 2014-2015 A(H3N2) viruses and included in the 2016-2017 vaccine, did not significantly predict protection. CONCLUSIONS: Absence of VE against A(H3N2) was consistent with circulation of antigenically drifted viruses; however, generally limited antibody response following vaccination is concerning even in the context of antigenic mismatch. Although 2014-2015 vaccines were not effective in preventing A(H3N2) infection, no increased susceptibility was detected among the repeatedly vaccinated.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Adulto Joven
8.
J Virol ; 90(1): 117-28, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26468531

RESUMEN

UNLABELLED: Antibodies against the neuraminidase (NA) of influenza virus correlate with resistance against disease, but the effectiveness of antibodies against different NA epitopes has not been compared. In the present study, we evaluated the in vitro and in vivo efficacies of four monoclonal antibodies (MAbs): HF5 and CD6, which are specific to two different epitopes in the NA of 2009 pandemic H1N1 (pH1N1) virus, and 4E9 and 1H5, which are specific to a conserved epitope in the NA of both H1N1 and H5N1 viruses. In the in vitro assays, HF5 and CD6 inhibited virus spread and growth more effectively than 4E9 and 1H5, with HF5 being the most effective inhibitor. When administered prophylactically at 5 mg/kg of body weight, HF5 and CD6 protected ~90 to 100% of DBA/2 mice against lethal wild-type pH1N1 virus challenge; however, at a lower dose (1 mg/kg), HF5 protected ~90% of mice, whereas CD6 protected only 25% of mice. 4E9 and 1H5 were less effective than HF5 and CD6, as indicated by the partial protection achieved even at doses as high as 15 mg/kg. When administered therapeutically, HF5 protected a greater proportion of mice against lethal pH1N1 challenge than CD6. However, HF5 quickly selected pH1N1 virus escape mutants in both prophylactic and therapeutic treatments, while CD6 did not. Our findings confirm the important role of NA-specific antibodies in immunity to influenza virus and provide insight into the properties of NA antibodies that may serve as good candidates for therapeutics against influenza. IMPORTANCE: Neuraminidase (NA) is one of the major surface proteins of influenza virus, serving as an important target for antivirals and therapeutic antibodies. The impact of NA-specific antibodies on NA activity and virus replication is likely to depend on where the antibody binds. Using in vitro assays and the mouse model, we compared the inhibitory/protective efficacy of four mouse monoclonal antibodies (MAbs) that bind to different sites within the 2009 pandemic H1N1 (pH1N1) virus NA. The ability of each MAb to protect mice against lethal pH1N1 infection corresponded to its ability to inhibit NA activity in vitro; however, the MAb that was the most effective inhibitor of NA activity selected pH1N1 escape variants in vivo. One of the tested MAbs, which binds to a conserved region in the NA of pH1N1 virus, inhibited NA activity but did not result in escape variants, highlighting its suitability for development as a therapeutic agent.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Replicación Viral , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Inmunización Pasiva , Ratones Endogámicos DBA , Infecciones por Orthomyxoviridae/prevención & control , Unión Proteica , Análisis de Supervivencia
9.
J Infect Dis ; 214(8): 1142-9, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095420

RESUMEN

BACKGROUND: Antibody titers decrease with time following influenza vaccination, raising concerns that vaccine efficacy might wane. However, the relationship between time since vaccination and protection is unclear. METHODS: Time-varying vaccine efficacy (VE[t]) was examined in healthy adult participants (age range, 18-49 years) in a placebo-controlled trial of inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) performed during the 2007-2008 influenza season. Symptomatic respiratory illnesses were laboratory-confirmed as influenza. VE(t) was estimated by fitting a smooth function based on residuals from Cox proportional hazards models. Subjects had blood samples collected immediately prior to vaccination, 30 days after vaccination, and at the end of the influenza season for testing by hemagglutination inhibition and neuraminidase inhibition assays. RESULTS: Overall efficacy was 70% (95% confidence interval [CI], 50%-82%) for IIV and 38% (95% CI, 5%-59%) for LAIV. Statistically significant waning was detected for IIV (P = .03) but not LAIV (P = .37); however, IIV remained significantly efficacious until data became sparse at the end of the season. Similarly, antibody titers against influenza virus hemagglutinin and neuraminidase significantly decreased over the season among IIV recipients. CONCLUSIONS: Both vaccines were efficacious but LAIV less so. IIV efficacy decreased slowly over time, but the vaccine remained significantly efficacious for the majority of the season.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Orthomyxoviridae/inmunología , Adolescente , Adulto , Femenino , Voluntarios Sanos , Pruebas de Inhibición de Hemaglutinación/métodos , Hemaglutininas/inmunología , Humanos , Pruebas Inmunológicas/métodos , Masculino , Persona de Mediana Edad , Neuraminidasa/inmunología , Estaciones del Año , Vacunación/métodos , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/inmunología , Adulto Joven
10.
Curr Top Microbiol Immunol ; 386: 275-99, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25033754

RESUMEN

Neuraminidase (NA) is the second most abundant influenza surface glycoprotein and contributes to virus replication in several ways, most notably by removing sialic acids from the host and viral glycoproteins, releasing newly formed virus particles from infected cells. Antibodies that block this enzyme activity restrict virus replication in vitro. This chapter describes foundational epidemiologic and human influenza challenge studies that provide evidence of an association between NA inhibiting antibodies and resistance to disease. Mouse challenge studies show that while NA immunity is infection-permissive, NA-specific antibodies attenuate infection and prevent severe disease. NA immunity is most effective against homologous viruses but there is substantial protection against viruses with a heterologous NA (different lineage within a NA subtype). Monoclonal antibodies specific for conserved antigenic domains of subtype N1 protect against seasonal and pandemic H1N1 as well as H5N1 virus challenge. Clinical studies demonstrate that licensed seasonal vaccines contain immunogenic amounts of NA, but the contribution of this immunity to vaccine efficacy is currently not known. New types of influenza vaccines could be designed to elicit NA immunity. Because NA induces heterologous immunity, it could be an important constituent of universal influenza vaccines that aim to protect against unexpected emerging viruses.


Asunto(s)
Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Orthomyxoviridae/enzimología , Animales , Humanos , Ratones , Neuraminidasa/química , Neuraminidasa/fisiología
11.
Biol Proced Online ; 17: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774096

RESUMEN

BACKGROUND: Alternative methods are being sought to measure the potency of influenza vaccines. Label-free technologies that do not require the use of hemagglutinin (HA)-specific antisera are particularly attractive as the preparation of antiserum delays availability of potency reagents. The objective of these experiments was to evaluate the use of a Corning Epic® label-free method to quantify functional influenza hemagglutinin in rHA preparations. The method was optimized to quantify recombinant HA (rHA) of B/Brisbane/60/2008 (B/BR/08). Fetuin was immobilized onto plates and the change in wavelength of refracted light measured using an Enspire (Perkin Elmer) instrument. RESULTS: The change in wavelength measured in response to addition of rHA of B/BR/08 was proportional to its concentration and was optimal in the presence of native rHA conformations. However, the assay was strain-dependent and did not correlate with HAU measured using turkey red blood cells. CONCLUSIONS: The Corning Epic® label-free method is suitable for quantifying the native forms of rHA for B/BR/08 and A/Brisbane/59/2007 (H1N1) and A/Hangxhou/3/2013 (H7N9). This method is a useful tool for research purposes but further investigation is needed to identify suitable glycoproteins to use as ligands that allow quantification of HAs from a broader range of virus strains.

12.
J Virol ; 87(16): 9290-300, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23785204

RESUMEN

Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza.


Asunto(s)
Secuencia Conservada , Protección Cruzada , Epítopos de Linfocito B/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Neuraminidasa/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Reacciones Cruzadas , Mapeo Epitopo , Epítopos de Linfocito B/genética , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/prevención & control , Análisis de Supervivencia
13.
Proc Natl Acad Sci U S A ; 108(51): 20748-53, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143798

RESUMEN

Seasonal epidemics caused by influenza virus are driven by antigenic changes (drift) in viral surface glycoproteins that allow evasion from preexisting humoral immunity. Antigenic drift is a feature of not only the hemagglutinin (HA), but also of neuraminidase (NA). We have evaluated the antigenic evolution of each protein in H1N1 and H3N2 viruses used in vaccine formulations during the last 15 y by analysis of HA and NA inhibition titers and antigenic cartography. As previously shown for HA, genetic changes in NA did not always lead to an antigenic change. The noncontinuous pattern of NA drift did not correspond closely with HA drift in either subtype. Although NA drift was demonstrated using ferret sera, we show that these changes also impact recognition by NA-inhibiting antibodies in human sera. Remarkably, a single point mutation in the NA of A/Brisbane/59/2007 was primarily responsible for the lack of inhibition by polyclonal antibodies specific for earlier strains. These data underscore the importance of NA inhibition testing to define antigenic drift when there are sequence changes in NA.


Asunto(s)
Antígenos/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/química , Neuraminidasa/química , Animales , Evolución Molecular , Hurones , Humanos , Vacunas contra la Influenza/química , Gripe Humana/prevención & control , Gripe Humana/virología , Modelos Moleculares , Conformación Molecular , Mutación , Virus Reordenados/química
14.
Microb Pathog ; 55: 9-15, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23247146

RESUMEN

Respiratory viral infections in infants and young children frequently cause illness that can easily progress to hospitalization and death. There are currently no licensed vaccines to prevent respiratory viral disease in children younger than 6 months, reflecting safety concerns and the difficulty in inducing effective immune responses in infants. This review discusses vaccines that have been developed, or are currently being developed, against influenza and respiratory syncytial virus, with a focus on studies performed to demonstrate their safety and efficacy, and the impact of immunologic immaturity and maternal antibodies on the infant response to vaccines.


Asunto(s)
Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Orthomyxoviridae/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Animales , Humanos , Lactante , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/inmunología , Gripe Humana/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación
15.
Virol J ; 10: 198, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23777453

RESUMEN

BACKGROUND: To evaluate immunity against influenza, mouse challenge studies are typically performed by intranasal instillation of a virus suspension to anesthetized animals. This results in an unnatural environment in the lower respiratory tract during infection, and therefore there is some concern that immune mechanisms identified in this model may not reflect those that protect against infectious virus particles delivered directly to the lower respiratory tract as an aerosol. METHOD: To evaluate differences in protection against instilled and inhaled virus, mice were immunized with influenza antigens known to induce antibody or cell-mediated responses and then challenged with 100 LD50 A/PR/8/34 (PR8) in the form of aerosol (inhaled) or liquid suspension (instilled). RESULTS: Mice immunized with recombinant adenovirus (Ad) expressing hemagglutinin were protected against weight loss and death in both challenge models, however immunization with Ad expressing nucleoprotein of influenza A (NPA) or M2 resulted in greater protection against inhaled aerosolized virus than virus instilled in liquid suspension. Ad-M2, but not Ad-NPA-immunized mice were protected against a lower instillation challenge dose. CONCLUSIONS: These results demonstrate differences in protection that are dependent on challenge method, and suggest that cell-mediated immunity may be more accurately demonstrated in mouse inhalation studies. Furthermore, the data suggest immune mechanisms generally characterized as incomplete or weak in mouse models using liquid intranasal challenge may offer greater immunity against influenza infection than previously thought.


Asunto(s)
Aerosoles/administración & dosificación , Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Animales , Peso Corporal , Embrión de Pollo , Modelos Animales de Enfermedad , Femenino , Vacunas contra la Influenza/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia
16.
Clin Infect Dis ; 53(12): 1179-87, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21976461

RESUMEN

BACKGROUND: The 2009 H1N1 pandemic viruses are genetically similar to A/New Jersey/76 H1N1 virus (NJ/76), the strain selected for the 1976 "swine flu" vaccines. Approximately 45 million people in the United States were vaccinated against NJ/76 30 years ago, but the impact of this nationwide immunization on the current pandemic is largely unknown. METHODS: Archived human serum samples collected during the 1976 swine flu vaccine trials were assessed for cross-reactive antibody responses to the 2009 H1N1 pandemic viruses. RESULTS: Administration of an NJ/76 monovalent vaccine or the combination of a bivalent vaccine (NJ/76 H1N1 and A/Victoria/75 H3N2) plus a B/Hong Kong/72 monovalent vaccine increased hemagglutinin inhibition (HAI) and neuraminidase inhibition (NAI) antibodies cross-reacting with the 2009 H1N1 pandemic viruses. We showed that cross-reactive human HAI antibodies elicited by the 1976 swine flu vaccination played a dominant role in protecting recipient mice against the wild-type A/California/04/2009. Cross-reactive human NAI antibodies were also protective in recipient mice after a lethal challenge with a hemagglutinin mismatched virus bearing the A/California/04/2009 neuraminidase gene. Transfer of human serum samples with an original HAI titer of 43 or an original NAI titer of 472 was estimated to protect 50% of recipient mice from a lethal infection under the experimental conditions described. CONCLUSIONS: The 1976 swine flu vaccination induced cross-reactive HAI and NAI antibodies that were functionally protective in mice, suggesting that this vaccination campaign might have had a positive impact on older adults (≥50 years) in the United States during the 2009 H1N1 pandemic.


Asunto(s)
Protección Cruzada , Reacciones Cruzadas , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Hemaglutininas/inmunología , Humanos , Inmunización Pasiva , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/inmunología , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/prevención & control , Estados Unidos
17.
Virol J ; 8: 251, 2011 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-21600020

RESUMEN

BACKGROUND: Influenza virus continues to cause significant hospitalization rates in infants and young children. A 2-dose regime of trivalent inactivated vaccine is required to generate protective levels of hemagglutination inhibiting (HAI) antibodies. A vaccine preparation with enhanced immunogenicity is therefore desirable. METHODS: Mice were inoculated intramuscularly (IM) with live and inactivated preparations of A/Wisconsin/67/2005 (H3N2). Serum cytokine levels, hemagglutinin (HA)-specific antibody responses and nucleoprotein (NP)-specific CD8+ T cell responses were compared between vaccinated groups, as well as to responses measured after intranasal infection. The protective efficacy of each vaccine type was compared by measuring virus titers in the lungs and weight loss of mice challenged intranasally with a heterosubtypic virus, A/PR/8/34 (H1N1). RESULTS: Intramuscular administration of live virus resulted in greater amounts of IFN-α, IL-12 and IFN-γ, HA-specific antibodies, and virus-specific CD8+ T cells, than IM immunization with inactivated virus. These increases corresponded with the live virus vaccinated group having significantly less weight loss and less virus in the lungs on day 7 following challenge with a sublethal dose of a heterosubtypic virus. CONCLUSIONS: Inflammatory cytokines, antibody titers to HA and CD8+ T cell responses were greater to live than inactivated virus delivered IM. These increased responses correlated with greater protection against heterosubtypic virus challenge, suggesting that intramuscular immunization with live influenza virus may be a practical means to increase vaccine immunogenicity and to broaden protection in pediatric populations.


Asunto(s)
Inmunización/métodos , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Animales , Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , Proteínas de Unión al ARN/inmunología , Enfermedades de los Roedores/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Proteínas del Núcleo Viral/inmunología
18.
J Infect Dis ; 201(9): 1397-403, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20350163

RESUMEN

BACKGROUND: The overall impact of influenza virus infection in immunocompromised patients is largely unknown. Antigenic drift and genetic variations during prolonged influenza infection have been demonstrated. In this report we describe a multidrug-resistant H3N2 influenza virus isolated from an immunocompromised patient after 5 days of therapy. METHODS: Multiple nasal wash samples were collected from an infected patient, and viral isolates were characterized. Sensitivity to antiviral agents was evaluated. Fitness and transmissibility were assessed in ferrets and tissue culture. RESULTS: An in-frame 4-amino acid deletion emerged in the neuraminidase (NA) gene of an H3N2 virus after 5 days of oseltamivir therapy. No other changes in the NA or hemagglutinin genes were noted. Drug sensitivity assays revealed resistance to oseltamivir (>10-fold increase in 50% inhibitory concentration [IC(50)]) and reduction in sensitivity to zanamivir (3-7-fold increase in IC(50) or 50% effective concentration). No change in fitness or transmissibility was observed. CONCLUSIONS: An in-frame NA gene deletion was rapidly selected for in an immunocompromised patient, resulting in decreased sensitivity of the isolate to available NA inhibitors without a change in fitness or transmissibility. This finding has implications for our understanding of the emergence of antiviral resistance and treatment of patients with influenza A infection, especially those who are immunocompromised.


Asunto(s)
Huésped Inmunocomprometido , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Adulto , Animales , Farmacorresistencia Viral Múltiple/genética , Hurones/virología , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/inmunología , Gripe Humana/transmisión , Linfoma de Células del Manto/complicaciones , Linfoma de Células del Manto/virología , Masculino , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Replicación Viral/genética
20.
Viruses ; 12(6)2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486222

RESUMEN

Influenza virus infection elicits antibodies against the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Because HA is essential for viral entry, antibodies targeting HA often potently neutralize the virus in single-cycle infection assays. However, antibodies against NA are not potently neutralizing in such assays, since NA is dispensable for single-cycle infection. Here we show that a modified influenza virus that depends on NA for receptor binding is much more sensitive than a virus with receptor-binding HA to neutralization by some anti-NA antibodies. Specifically, a virus with a receptor-binding G147R N1 NA and a binding-deficient HA is completely neutralized in single-cycle infections by an antibody that binds near the NA active site. Infection is also substantially inhibited by antibodies that bind NA epitopes distant from the active site. Finally, we demonstrate that this modified virus can be used to efficiently select mutations in NA that escape antibody binding, a task that can be laborious with typical influenza viruses that are not well neutralized by anti-NA antibodies. Thus, viruses dependent on NA for receptor binding allow for sensitive in vitro detection of antibodies binding near the catalytic site of NA and enable the selection of viral escape mutants.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Neuraminidasa/metabolismo , Orthomyxoviridae/metabolismo , Receptores Virales/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/inmunología , Gripe Humana/virología , Pruebas de Neutralización , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , ARN Viral/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA