Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955741

RESUMEN

Dofetilide is a rapid delayed rectifier potassium current inhibitor widely used to prevent the recurrence of atrial fibrillation and flutter. The clinical use of this drug is associated with increases in QTc interval, which predispose patients to ventricular cardiac arrhythmias. The mechanisms involved in the disposition of dofetilide, including its movement in and out of cardiomyocytes, remain unknown. Using a xenobiotic transporter screen, we identified MATE1 (SLC47A1) as a transporter of dofetilide and found that genetic knockout or pharmacological inhibition of MATE1 in mice was associated with enhanced retention of dofetilide in cardiomyocytes and increased QTc prolongation. The urinary excretion of dofetilide was also dependent on the MATE1 genotype, and we found that this transport mechanism provides a mechanistic basis for previously recorded drug-drug interactions of dofetilide with various contraindicated drugs, including bictegravir, cimetidine, ketoconazole, and verapamil. The translational significance of these observations was examined with a physiologically-based pharmacokinetic model that adequately predicted the drug-drug interaction liabilities in humans. These findings support the thesis that MATE1 serves a conserved cardioprotective role by restricting excessive cellular accumulation and warrant caution against the concurrent administration of potent MATE1 inhibitors and cardiotoxic substrates with a narrow therapeutic window.


Asunto(s)
Antiarrítmicos , Fibrilación Atrial , Animales , Antiarrítmicos/farmacología , Humanos , Ratones , Fenetilaminas/farmacología , Sulfonamidas/uso terapéutico
2.
Drug Metab Dispos ; 49(7): 548-562, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33952610

RESUMEN

Tropifexor (NVP-LJN452) is a highly potent, selective, nonsteroidal, non-bile acid farnesoid X receptor agonist for the treatment of nonalcoholic steatohepatitis. Its absorption, metabolism, and excretion were studied after a 1-mg oral dose of [14C]tropifexor was given to four healthy male subjects. Mass balance was achieved with ∼94% of the administered dose recovered in excreta through a 312-hour collection period. Fecal excretion of tropifexor-related radioactivity played a major role (∼65% of the total dose). Tropifexor reached a maximum blood concentration (Cmax) of 33.5 ng/ml with a median time to reach Cmax of 4 hours and was eliminated with a plasma elimination half-life of 13.5 hours. Unchanged tropifexor was the principal drug-related component found in plasma (∼92% of total radioactivity). Two minor oxidative metabolites, M11.6 and M22.4, were observed in circulation. Tropifexor was eliminated predominantly via metabolism with >68% of the dose recovered as metabolites in excreta. Oxidative metabolism appeared to be the major clearance pathway of tropifexor. Metabolites containing multiple oxidative modifications and combined oxidation and glucuronidation were also observed in human excreta. The involvement of direct glucuronidation could not be ruled out based on previous in vitro and nonclinical in vivo studies indicating its contribution to tropifexor clearance. The relative contribution of the oxidation and glucuronidation pathways appeared to be dose-dependent upon further in vitro investigation. Because of these complexities and the instability of glucuronide metabolites in the gastrointestinal tract, the contribution of glucuronidation remained undefined in this study. SIGNIFICANCE STATEMENT: Tropifexor was found to be primarily cleared from the human body via oxidative metabolism. In vitro metabolism experiments revealed that the relative contribution of oxidation and glucuronidation was concentration-dependent, with glucuronidation as the predominant pathway at higher concentrations and the oxidative process becoming more important at lower concentrations near clinical exposure range. The body of work demonstrated the importance of carefully designed in vivo and in vitro experiments for better understanding of disposition processes during drug development.


Asunto(s)
Benzotiazoles/farmacocinética , Isoxazoles/farmacocinética , Administración Oral , Adolescente , Adulto , Benzotiazoles/administración & dosificación , Absorción Gastrointestinal , Voluntarios Sanos , Humanos , Isoxazoles/administración & dosificación , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Adulto Joven
3.
Drug Metab Dispos ; 49(1): 94-110, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139460

RESUMEN

Translational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (Emax and EC50) and drug-drug interaction (DDI) risk assessment was determined. Despite variability in induction response across hepatocyte donors, the following recommendations are proposed: 1) 48 hours should be the primary time point for in vitro assessment of induction based on mRNA level or activity, with no further benefit from 72 hours; 2) when using mRNA, 24-hour incubations provide reliable assessment of induction and DDI risk; 3) if validated using prototypical inducers (>10-fold induction), 12-hour incubations may provide an estimate of induction potential, including characterization as negative if <2-fold induction of mRNA and no concentration dependence; 4) atypical dose-response ("bell-shaped") curves can be addressed by removing points outside an established confidence interval and %CV; 5) when maximum fold induction is well defined, the choice of nonlinear regression model has limited impact on estimated induction parameters; 6) when the maximum fold induction is not well defined, conservative DDI risk assessment can be obtained using sigmoidal three-parameter fit or constraining logistic three- or four-parameter fits to the maximum observed fold induction; 7) preliminary data suggest initial slope of the fold induction curve can be used to estimate Emax/EC50 and for induction risk assessment. SIGNIFICANCE STATEMENT: Regulatory agencies provide inconsistent guidance on the optimum length of time to evaluate cytochrome P450 induction in human hepatocytes, with EMA recommending 72 hours and FDA suggesting 48-72 hours. The Induction Working Group analyzed a large data set generated by seven member companies and determined that induction response and drug-drug risk assessment determined after 48-hour incubations were representative of 72-hour incubations. Additional recommendations are provided on model-fitting techniques for induction parameter estimation and addressing atypical concentration-response curves.


Asunto(s)
Desarrollo de Medicamentos , Interacciones Farmacológicas , Control de Medicamentos y Narcóticos , Medición de Riesgo/métodos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/normas , Control de Medicamentos y Narcóticos/métodos , Control de Medicamentos y Narcóticos/organización & administración , Inducción Enzimática , Guías como Asunto , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Modelos Biológicos , Farmacocinética , Reproducibilidad de los Resultados
4.
Xenobiotica ; 50(2): 150-169, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31006307

RESUMEN

Asciminib is a potent, specific BCR-ABL1 inhibitor being developed for the treatment of patients with chronic myelogenous leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia (Ph + ALL).Here, we present the results of human oral absorption, distribution, metabolism, excretion (ADME) and in vitro studies that together provide an overall understanding of the metabolism, distribution and clearance of asciminib in humans.Asciminib was rapidly absorbed with a maximum plasma concentration at two hours post-dose. Total radioactivity and asciminib showed similar terminal half-lives in plasma.Oral asciminib absorption ranged between a minimum of 33%, and a maximum of 57% based on the metabolite profiles of late time-point feces collections.Asciminib was eliminated mainly through feces via unchanged asciminib excretion and metabolism.Direct glucuronidation and oxidation were major metabolic pathways in human that were catalyzed predominantly by UDP-glucuronosyltransferase (UGT)2B7 and cytochrome P450 (CYP)3A4, respectively.The relative contribution of the glucuronidation pathway to the total clearance of asciminib via metabolism is estimated to range ∼28-58%, whereas the relative contribution of the oxidative pathway is estimated to range ∼37-64%, based upon the maximum oral absorption in humans.


Asunto(s)
Niacinamida/análogos & derivados , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , Adulto , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Masculino , Niacinamida/metabolismo
5.
Drug Metab Dispos ; 46(1): 26-32, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038231

RESUMEN

The 2016 World Health Organization treatment recommendations for drug-resistant tuberculosis (DR-TB) positioned clofazimine as a core second-line drug. Being identified as a cytochrome P450 (P450) inhibitor in vitro, a P450-mediated drug interaction may be likely when clofazimine is coadministered with substrates of these enzymes. The P450-mediated drug interaction potential of clofazimine was evaluated using both static [estimation of the R1 and area under the plasma concentration-time curve ratio (AUCR) values] and dynamic [physiologically based pharmacokinetics (PBPK)] modeling approaches. For static and dynamic predictions, midazolam, repaglinide, and desipramine were used as probe substrates for CYP3A4/5, CYP2C8, and CYP2D6, respectively. The AUCR static model estimations for clofazimine with the substrates midazolam, repaglinide, and desipramine were 5.59, 1.34, and 1.69, respectively. The fold increases in the area under the curve (AUC) predicted for midazolam, repaglinide, and desipramine with clofazimine (based on PBPK modeling) were 2.69, 1.60, and 1.47, respectively. Clofazimine was predicted to be a moderate-to-strong CYP3A4/5 inhibitor and weak CYP2C8 and CYP2D6 inhibitor based on the calculated AUCR by static and PBPK modeling. Additionally, for selected antiretroviral, antitubercular, antihypertensive, antidiabetic, antileprotics, and antihyperlipidemic CYP3A4/5 substrate drugs, approximately 2- to 6-fold increases in the AUC were predicted with static modeling when coadministered with 100 mg of clofazimine. Therefore, the possibility of an increase in the AUC of CYP3A4/5 substrates when coadministered with clofazimine cannot be ignored.


Asunto(s)
Antituberculosos/farmacocinética , Clofazimina/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Biológicos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Antituberculosos/uso terapéutico , Área Bajo la Curva , Carbamatos/farmacocinética , Clofazimina/uso terapéutico , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Desipramina/farmacocinética , Interacciones Farmacológicas , Humanos , Midazolam/farmacocinética , Piperidinas/farmacocinética
6.
Drug Metab Dispos ; 46(2): 109-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29117990

RESUMEN

Midostaurin (PKC412) is being investigated for the treatment of acute myeloid leukemia (AML) and advanced systemic mastocytosis (advSM). It is extensively metabolized by CYP3A4 to form two major active metabolites, CGP52421 and CGP62221. In vitro and clinical drug-drug interaction (DDI) studies indicated that midostaurin and its metabolites are substrates, reversible and time-dependent inhibitors, and inducers of CYP3A4. A simultaneous pharmacokinetic model of parent and active metabolites was initially developed by incorporating data from in vitro, preclinical, and clinical pharmacokinetic studies in healthy volunteers and in patients with AML or advSM. The model reasonably predicted changes in midostaurin exposure after single-dose administration with ketoconazole (a 5.8-fold predicted versus 6.1-fold observed increase) and rifampicin (90% predicted versus 94% observed reduction) as well as changes in midazolam exposure (1.0 predicted versus 1.2 observed ratio) after daily dosing of midostaurin for 4 days. The qualified model was then applied to predict the DDI effect with other CYP3A4 inhibitors or inducers and the DDI potential with midazolam under steady-state conditions. The simulated midazolam area under the curve ratio of 0.54 and an accompanying observed 1.9-fold increase in the CYP3A4 activity of biomarker 4ß-hydroxycholesterol indicated a weak-to-moderate CYP3A4 induction by midostaurin and its metabolites at steady state in patients with advSM. In conclusion, a simultaneous parent-and-active-metabolite modeling approach allowed predictions under steady-state conditions that were not possible to achieve in healthy subjects. Furthermore, endogenous biomarker data enabled evaluation of the net effect of midostaurin and its metabolites on CYP3A4 activity at steady state and increased confidence in DDI predictions.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas/fisiología , Estaurosporina/análogos & derivados , Adulto , Biomarcadores/metabolismo , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Femenino , Humanos , Hidroxicolesteroles/metabolismo , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Masculino , Midazolam/metabolismo , Midazolam/farmacocinética , Persona de Mediana Edad , Modelos Biológicos , Rifampin/metabolismo , Rifampin/farmacocinética , Estaurosporina/metabolismo , Estaurosporina/farmacocinética , Adulto Joven
7.
Drug Metab Dispos ; 46(9): 1285-1303, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29959133

RESUMEN

The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Control de Medicamentos y Narcóticos , Invenciones/normas , Control de Calidad , ARN Mensajero/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas/fisiología , Flumazenil/metabolismo , Flumazenil/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Rifampin/metabolismo , Rifampin/farmacología
8.
Drug Metab Dispos ; 45(4): 361-374, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122787

RESUMEN

Sonidegib (Odomzo) is an orally available Smoothened inhibitor for the treatment of advanced basal cell carcinoma. Sonidegib was found to be metabolized primarily by cytochrome P450 (CYP)3A in vitro. The effect of multiple doses of the strong CYP3A perpetrators, ketoconazole (KTZ) and rifampin (RIF), on sonidegib pharmacokinetics (PK) after a single 800 mg dose in healthy subjects was therefore assessed. These data were used to verify a physiologically-based pharmacokinetic (PBPK) model developed to 1) bridge the clinical drug-drug interaction (DDI) study of sonidegib with KTZ and RIF in healthy subjects to the marketed dose (200 mg) in patients 2) predict acute (14 days) versus long-term dosing of the perpetrators with sonidegib at steady state and 3) predict the effect of moderate CYP3A perpetrators on sonidegib exposure in patients. Treatment of healthy subjects with KTZ resulted in an increased sonidegib exposure of 2.25- and 1.49-fold (area under the curve0-240h and maximal concentration respectively), and RIF decreased exposure by 72% and 54%, respectively. The model simulated the single- and/or multiple-dose PK of sonidegib (healthy subjects and patients) within ∼50% of observed values. The effect of KTZ and RIF on sonidegib in healthy subjects was also simulated well, and the predicted DDI in patients was slightly less and independent of sonidegib dose. At steady state, sonidegib was predicted to have a higher DDI magnitude with strong or moderate CYP3A perpetrators compared with a single dose. Different dosing regimens of sondigeb with the perpetrators were also simulated and provided guidance to the current dosing recommendations incorporated in the product label.


Asunto(s)
Compuestos de Bifenilo/farmacocinética , Simulación por Computador , Inductores del Citocromo P-450 CYP3A/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Piridinas/farmacocinética , Adulto , Compuestos de Bifenilo/administración & dosificación , Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/administración & dosificación , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Interacciones Farmacológicas , Femenino , Voluntarios Sanos , Humanos , Cetoconazol/administración & dosificación , Cetoconazol/farmacocinética , Cetoconazol/farmacología , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Piridinas/administración & dosificación , Rifampin/administración & dosificación , Rifampin/farmacocinética , Receptor Smoothened/antagonistas & inhibidores , Factores de Tiempo , Adulto Joven
9.
Drug Metab Dispos ; 45(12): 1304-1316, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28912253

RESUMEN

Panobinostat (Farydak) is an orally active hydroxamic acid-derived histone deacetylase inhibitor used for the treatment of relapsed or refractory multiple myeloma. Based on recombinant cytochrome P450 (P450) kinetic analyses in vitro, panobinostat oxidative metabolism in human liver microsomes was mediated primarily by CYP3A4 with lower contributions by CYP2D6 and CYP2C19. Panobinostat was also an in vitro reversible and time-dependent inhibitor of CYP3A4/5 and a reversible inhibitor of CYP2D6 and CYP2C19. Based on a previous clinical drug-drug interaction study with ketoconazole (KTZ), the contribution of CYP3A4 in vivo was estimated to be ∼40%. Using clinical pharmacokinetic (PK) data from several trials, including the KTZ drug-drug interaction (DDI) study, a physiologically based pharmacokinetic (PBPK) model was built to predict panobinostat PK after single and multiple doses (within 2-fold of observed values for most trials) and the clinical DDI with KTZ (predicted and observed area under the curve ratios of 1.8). The model was then applied to predict the drug interaction with the strong CYP3A4 inducer rifampin (RIF) and the sensitive CYP3A4 substrate midazolam (MDZ) in lieu of clinical trials. Panobinostat exposure was predicted to decrease in the presence of RIF (65%) and inconsequentially increase MDZ exposure (4%). Additionally, PBPK modeling was used to examine the effects of stomach pH on the absorption of panobinostat in humans and determined that absorption of panobinostat is not expected to be affected by increases in stomach pH. The results from these studies were incorporated into the Food and Drug Administration-approved product label, providing guidance for panobinostat dosing recommendations when it is combined with other drugs.


Asunto(s)
Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/farmacocinética , Ácidos Hidroxámicos/efectos adversos , Ácidos Hidroxámicos/farmacocinética , Indoles/efectos adversos , Indoles/farmacocinética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Interacciones Farmacológicas , Inducción Enzimática/efectos de los fármacos , Determinación de la Acidez Gástrica , Humanos , Microsomas Hepáticos/enzimología , Midazolam/farmacocinética , Midazolam/farmacología , Modelos Biológicos , Oxidación-Reducción , Panobinostat , Rifampin/farmacocinética , Rifampin/farmacología
10.
Xenobiotica ; 47(12): 1077-1089, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27855567

RESUMEN

1. Pradigastat is a potent and specific diacylglycerol acyltransferase-1 (DGAT1) inhibitor effective in lowering postprandial triglycerides (TG) in healthy human subjects and fasting TG in familial chylomicronemia syndrome (FCS) patients. 2. Here we present the results of human oral absorption, metabolism and excretion (AME), intravenous pharmacokinetic (PK), and in vitro studies which together provide an overall understanding of the disposition of pradigastat in humans. 3. In human in vitro systems, pradigastat is metabolized slowly to a stable acyl glucuronide (M18.4), catalyzed mainly by UDP-glucuronosyltransferases (UGT) 1A1, UGT1A3 and UGT2B7. M18.4 was observed at very low levels in human plasma. 4. In the human AME study, pradigastat was recovered in the feces as parent drug, confounding the assessment of pradigastat absorption and the important routes of elimination. However, considering pradigastat exposure after oral and intravenous dosing, this data suggests that pradigastat was completely bioavailable in the radiolabeled AME study and therefore completely absorbed. 5. Pradigastat is eliminated very slowly into the feces, presumably via the bile. Renal excretion is negligible. Oxidative metabolism is minimal. The extent to which pradigastat is eliminated via metabolism to M18.4 could not be established from these studies due to the inherent instability of glucuronides in the gastrointestinal tract.


Asunto(s)
Acetatos/farmacocinética , Aminopiridinas/farmacocinética , Diacilglicerol O-Acetiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacocinética , Humanos
11.
Xenobiotica ; 47(8): 682-696, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27499331

RESUMEN

1. Absorption, distribution, metabolism, transport and elimination properties of omadacycline, an aminomethylcycline antibiotic, were investigated in vitro and in a study in healthy male subjects. 2. Omadacycline was metabolically stable in human liver microsomes and hepatocytes and did not inhibit or induce any of the nine cytochrome P450 or five transporters tested. Omadacycline was a substrate of P-glycoprotein, but not of the other transporters. 3. Omadacycline metabolic stability was confirmed in six healthy male subjects who received a single 300 mg oral dose of [14C]-omadacycline (36.6 µCi). Absorption was rapid with peak radioactivity (∼610 ngEq/mL) between 1-4 h in plasma or blood. The AUClast of plasma radioactivity (only quantifiable to 8 h due to low radioactivity) was 3096 ngEq h/mL and apparent terminal half-life was 11.1 h. Unchanged omadacycline reached peak plasma concentrations (∼563 ng/mL) between 1-4 h. Apparent plasma half-life was 17.6 h with biphasic elimination. Plasma exposure (AUCinf) averaged 9418 ng h/mL, with high clearance (CL/F, 32.8 L/h) and volume of distribution (Vz/F 828 L). No plasma metabolites were observed. 4. Radioactivity recovery of the administered dose in excreta was complete (>95%); renal and fecal elimination were 14.4% and 81.1%, respectively. No metabolites were observed in urine or feces, only the omadacycline C4-epimer.


Asunto(s)
Antibacterianos/farmacología , Tetraciclinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Administración Oral , Adulto , Antibacterianos/metabolismo , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Semivida , Humanos , Masculino , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo , Tetraciclinas/metabolismo
12.
Drug Metab Dispos ; 44(10): 1720-30, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27422672

RESUMEN

Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.


Asunto(s)
Inductores del Citocromo P-450 CYP2B6/farmacología , Células Cultivadas , Interacciones Farmacológicas , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos
13.
Drug Metab Dispos ; 44(5): 653-64, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921386

RESUMEN

KAE609 [(1'R,3'S)-5,7'-dichloro-6'-fluoro-3'-methyl-2',3',4',9'-tetrahydrospiro[indoline-3,1'-pyridol[3,4-b]indol]-2-one] is a potent, fast-acting, schizonticidal agent being developed for the treatment of malaria. After oral dosing of KAE609 to rats and dogs, the major radioactive component in plasma was KAE609. An oxidative metabolite, M18, was the prominent metabolite in rat and dog plasma. KAE609 was well absorbed and extensively metabolized such that low levels of parent compound (≤11% of the dose) were detected in feces. The elimination of KAE609 and metabolites was primarily mediated via biliary pathways (≥93% of the dose) in the feces of rats and dogs. M37 and M23 were the major metabolites in rat and dog feces, respectively. Among the prominent metabolites of KAE609, the isobaric chemical species, M37, was observed, suggesting the involvement of an isomerization or rearrangement during biotransformation. Subsequent structural elucidation of M37 revealed that KAE609, a spiroindolone, undergoes an unusual C-C bond cleavage, followed by a 1,2-acyl shift to form a ring expansion metabolite M37. The in vitro metabolism of KAE609 in hepatocytes was investigated to understand this novel biotransformation. The metabolism of KAE609 was qualitatively similar across the species studied; thus, further investigation was conducted using human recombinant cytochrome P450 enzymes. The ring expansion reaction was found to be primarily catalyzed by cytochrome P450 (CYP) 3A4 yielding M37. M37 was subsequently oxidized to M18 by CYP3A4 and hydroxylated to M23 primarily by CYP1A2. Interestingly, M37 was colorless, whereas M18 and M23 showed orange yellow color. The source of the color of M18 and M23 was attributed to their extended conjugated system of double bonds in the structures.


Asunto(s)
Indoles/metabolismo , Indoles/farmacología , Malaria/tratamiento farmacológico , Compuestos de Espiro/metabolismo , Compuestos de Espiro/farmacología , Animales , Bilis/metabolismo , Biotransformación/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Heces/química , Hepatocitos/metabolismo , Humanos , Hidroxilación , Masculino , Ratas , Ratas Wistar
14.
Drug Metab Dispos ; 44(8): 1399-423, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27052879

RESUMEN

Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.


Asunto(s)
Descubrimiento de Drogas/normas , Industria Farmacéutica/normas , Enzimas/metabolismo , Modelos Teóricos , Preparaciones Farmacéuticas/metabolismo , Animales , Biotransformación , Simulación por Computador , Árboles de Decisión , Descubrimiento de Drogas/métodos , Interacciones Farmacológicas , Humanos , Cinética , Preparaciones Farmacéuticas/química , Medición de Riesgo , Especificidad de la Especie , Especificidad por Sustrato
15.
Xenobiotica ; 46(11): 986-1000, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26931777

RESUMEN

1. Sacubitril/valsartan (LCZ696) is an angiotensin receptor neprilysin inhibitor (ARNI) providing simultaneous inhibition of neprilysin (neutral endopeptidase 24.11; NEP) and blockade of the angiotensin II type-1 (AT1) receptor. 2. Following oral administration, [(14)C]LCZ696 delivers systemic exposure to valsartan and AHU377 (sacubitril), which is rapidly metabolized to LBQ657 (M1), the biologically active neprilysin inhibitor. Peak sacubitril plasma concentrations were reached within 0.5-1 h. The mean terminal half-lives of sacubitril, LBQ657 and valsartan were ∼1.3, ∼12 and ∼21 h, respectively. 3. Renal excretion was the dominant route of elimination of radioactivity in human. Urine accounted for 51.7-67.8% and feces for 36.9 to 48.3 % of the total radioactivity. The majority of the drug was excreted as the active metabolite LBQ657 in urine and feces, total accounting for ∼85.5% of the total dose. 4. Based upon in vitro studies, the potential for LCZ696 to inhibit or induce cytochrome P450 (CYP) enzymes and cause CYP-mediated drug interactions clinically was found to be low.


Asunto(s)
Aminobutiratos/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Tetrazoles/metabolismo , Valsartán/metabolismo , Adulto , Compuestos de Bifenilo , Combinación de Medicamentos , Humanos , Neprilisina/antagonistas & inhibidores
16.
Drug Metab Dispos ; 42(9): 1379-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24924386

RESUMEN

Cytochrome P450 (P450) induction is often considered a liability in drug development. Using calibration curve-based approaches, we assessed the induction parameters R3 (a term indicating the amount of P450 induction in the liver, expressed as a ratio between 0 and 1), relative induction score, Cmax/EC50, and area under the curve (AUC)/F2 (the concentration causing 2-fold increase from baseline of the dose-response curve), derived from concentration-response curves of CYP3A4 mRNA and enzyme activity data in vitro, as predictors of CYP3A4 induction potential in vivo. Plated cryopreserved human hepatocytes from three donors were treated with 20 test compounds, including several clinical inducers and noninducers of CYP3A4. After the 2-day treatment, CYP3A4 mRNA levels and testosterone 6ß-hydroxylase activity were determined by real-time reverse transcription polymerase chain reaction and liquid chromatography-tandem mass spectrometry analysis, respectively. Our results demonstrated a strong and predictive relationship between the extent of midazolam AUC change in humans and the various parameters calculated from both CYP3A4 mRNA and enzyme activity. The relationships exhibited with non-midazolam in vivo probes, in aggregate, were unsatisfactory. In general, the models yielded better fits when unbound rather than total plasma Cmax was used to calculate the induction parameters, as evidenced by higher R(2) and lower root mean square error (RMSE) and geometric mean fold error. With midazolam, the R3 cut-off value of 0.9, as suggested by US Food and Drug Administration guidance, effectively categorized strong inducers but was less effective in classifying midrange or weak inducers. This study supports the use of calibration curves generated from in vitro mRNA induction response curves to predict CYP3A4 induction potential in human. With the caveat that most compounds evaluated here were not strong inhibitors of enzyme activity, testosterone 6ß-hydroxylase activity was also demonstrated to be a strong predictor of CYP3A4 induction potential in this assay model.


Asunto(s)
Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inducción Enzimática/genética , Área Bajo la Curva , Calibración , Células Cultivadas , Criopreservación/métodos , Hepatocitos/metabolismo , Humanos , Oxigenasas de Función Mixta/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , ARN Mensajero/genética , Testosterona/metabolismo , Estados Unidos , United States Food and Drug Administration
17.
Drug Metab Dispos ; 38(5): 761-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20164109

RESUMEN

Aristolochic acids (AAs) are plant-derived nephrotoxins and carcinogens responsible for chronic renal failure and associated urothelial cell cancers in several clinical syndromes known collectively as aristolochic acid nephropathy (AAN). Mice provide a useful model for study of AAN because the renal histopathology of AA-treated mice is strikingly similar to that of humans. AA is also a potent carcinogen in mice with a tissue spectrum somewhat different from that in humans. The toxic dose of AA in mice is higher than that in humans; this difference in susceptibility has been postulated to reflect differing rates of detoxication between the species. Recent studies in mice have shown that the hepatic cytochrome P450 system detoxicates AA, and inducers of the arylhydrocarbon response protect mice from the nephrotoxic effects of AA. The purpose of this study was to determine the role of specific cytochrome P450 (P450) enzymes in AA metabolism in vivo. Of 18 human P450 enzymes we surveyed only two, CYP1A1 and CYP1A2, which were effective in demethylating 8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI) to the nontoxic derivative 8-hydroxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAIa). Kinetic analysis revealed similar efficiencies of formation of AAIa by human and rat CYP1A2. We also report here that CYP1A2-deficient mice display increased sensitivity to the nephrotoxic effects of AAI. Furthermore, Cyp1a2 knockout mice accumulate AAI-derived DNA adducts in the kidney at a higher rate than control mice. Differences in bioavailability or hepatic metabolism of AAI, expression of CYP1A2, or efficiency of a competing nitroreduction pathway in vivo may explain the apparent differences between human and rodent sensitivity to AAI.


Asunto(s)
Ácidos Aristolóquicos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Albuminuria/inducido químicamente , Albuminuria/genética , Animales , Ácidos Aristolóquicos/farmacocinética , Biocatálisis , Creatinina/orina , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Aductos de ADN/metabolismo , Glucurónidos/metabolismo , Humanos , Inactivación Metabólica/genética , Riñón/efectos de los fármacos , Riñón/metabolismo , Cinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metilcolantreno/farmacología , Ratones , Ratones Endogámicos , Ratones Noqueados , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas , Proteínas Recombinantes/metabolismo
18.
CPT Pharmacometrics Syst Pharmacol ; 9(4): 230-237, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32150661

RESUMEN

Everolimus is currently approved in Europe as an adjunctive therapy for patients aged ≥ 2 years with tuberous sclerosis complex (TSC)-associated treatment-refractory partial-onset seizures, based on the EXIST-3 study (NCT01713946) results. As TSC-associated seizures can also affect children aged between 6 months and 2 years, a modeling and simulation (M&S) approach was undertaken to extrapolate exposure (trough plasma concentration (Cmin )) after a dose of 6 mg/m2 and reduction in seizure frequency (RSF). A physiologically based pharmacokinetic model using Simcyp was developed to predict Cmin in adult and pediatric patients, which was then used by a population pharmacodynamic model and a linear mixed effect model to predict short-term and long-term efficacy in adults (for validation) and in children, respectively. Based on the results of the M&S study, everolimus at the dose of 6 mg/m2 is anticipated to be an efficacious treatment in children 6 months to 2 years of age (up to 77.8% RSF) with concentrations within the recommended target range.


Asunto(s)
Everolimus/administración & dosificación , Modelos Biológicos , Convulsiones/tratamiento farmacológico , Esclerosis Tuberosa/tratamiento farmacológico , Adulto , Factores de Edad , Preescolar , Simulación por Computador , Relación Dosis-Respuesta a Droga , Desarrollo de Medicamentos/métodos , Everolimus/farmacocinética , Humanos , Lactante , Convulsiones/etiología , Factores de Tiempo , Esclerosis Tuberosa/complicaciones
19.
Drug Metab Dispos ; 37(7): 1339-54, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19389860

RESUMEN

Cytochrome P450 (P450) induction is one of the factors that can affect the pharmacokinetics of a drug molecule upon multiple dosing, and it can result in pharmacokinetic drug-drug interactions with coadministered drugs causing potential therapeutic failures. In recent years, various in vitro assays have been developed and used routinely to assess the potential for drug-drug interactions due to P450 induction. There is a desire from the pharmaceutical industry and regulatory agencies to harmonize assay methodologies, data interpretation, and the design of clinical drug-drug interaction studies. In this article, a team of 10 scientists from nine Pharmaceutical Research and Manufacturers of America (PhRMA) member companies conducted an anonymous survey among PhRMA companies to query current practices with regards to the conduct of in vitro induction assays, data interpretation, and clinical induction study practices. The results of the survey are presented in this article, along with reviews of current methodologies of in vitro assays and in vivo studies, including modeling efforts in this area. A consensus recommendation regarding common practices for the conduct of P450 induction studies is included.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Hepatocitos/metabolismo , Receptores de Esteroides/metabolismo , Américas , Biología Computacional , Sistema Enzimático del Citocromo P-450/metabolismo , Recolección de Datos , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Interacciones Farmacológicas , Inducción Enzimática/fisiología , Predicción , Humanos , Receptor X de Pregnano , Receptores de Esteroides/genética , Proyectos de Investigación , Activación Transcripcional
20.
Drug Metab Dispos ; 37(7): 1355-70, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19359406

RESUMEN

Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years, significant advances have been made only in the past few years regarding how in vitro time-dependent inhibition data can be used to understand and predict clinical DDI. In this article, a team of scientists from 16 pharmaceutical research organizations that are member companies of the Pharmaceutical Research and Manufacturers of America offer a discussion of the phenomenon of TDI with emphasis on the laboratory methods used in its measurement. Results of an anonymous survey regarding pharmaceutical industry practices and strategies around TDI are reported. Specific topics that still possess a high degree of uncertainty are raised, such as parameter estimates needed to make predictions of DDI magnitude from in vitro inactivation parameters. A description of follow-up mechanistic experiments that can be done to characterize TDI are described. A consensus recommendation regarding common practices to address TDI is included, the salient points of which include the use of a tiered approach wherein abbreviated assays are first used to determine whether NMEs demonstrate TDI or not, followed by more thorough inactivation studies for those that do to define the parameters needed for prediction of DDI.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Industria Farmacéutica , Interacciones Farmacológicas , Microsomas Hepáticos/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/metabolismo , Diseño de Fármacos , Glucuronosiltransferasa , Humanos , Microsomas Hepáticos/enzimología , Oxidorreductasas N-Desmetilantes/metabolismo , Preparaciones Farmacéuticas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA