Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Carbohydr Polym ; 318: 121130, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37479459

RESUMEN

The factors were studied that affect the formation of DN hydrogel, which was prepared using a water-based, environmental-friendly system. The DN hydrogel was designed and prepared based on a cross-linked, polysaccharide-based, polymer carboxymethyl chitosan (CMCS) via an ionic crosslinking reaction for the first network structure. UV irradiation created a radical crosslinking reaction of poly(ethylene glycol) from a double bond at the chain end for the second network structure. It was found that the optimum hydrogel was produced using 9.5 %v/v of 1000PEGGMA, CMCS 5%w/v, and CaCl2 3%w/v. The results showed the highest percentage of the gel fraction was 87.84 % and the hydrogel was stable based on its rheological properties. Factors affecting the hydrogel formation were the concentration and molecular weight of PEGGMA and the concentrations of CMCS and calcium chloride (CaCl2). The DN hydrogel had bioactivity due to its octacalcium phosphate (OCP) hydroxyapatite crystal form. In addition, the composite DN scaffold with a conductive polymer of chitosan-grafted-polyaniline (CS-g-PANI) had conduction of 2.33 × 10-5 S/cm when the concentration of CS-g-PANI was 3 mg/ml, confirming the semi-conductive nature of the material. All the results indicated that DN hydrogel could be a candidate to apply in tissue-engineering applications.

2.
Int J Biol Macromol ; 212: 420-431, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623458

RESUMEN

Recently, our group reported the synthesis and fabrication of composite hydrogels of chitosan (CS) and star-shaped polycaprolactone (stPCL). The co-crosslink of modified stPCL with carboxyl at the end chain (stPCL-COOH) provided good mechanical properties and stability to the composite hydrogels. This research presents the bioactivities of composite hydrogels showing a potential candidate to develop biomaterials such as wound dressing and bone tissue engineering. The bioactivities were the antibacterial activity, cell viability, skin irritation, decomposability, and ability to attach ions for apatite nucleation. The results showed that all the composite hydrogels were completely decomposed within 2 days. The composite hydrogels had better antibacterial activity and higher efficiency to Gram-negative (Escherichia coli) than to Gram-positive (Staphylococcus epidermidis) bacteria. The composite hydrogels were studied for cell viability based on MTT assay and skin irritation on rabbit skin. The results indicated high cell survival more than 80% and no skin irritation. In addition, the results showed that calcium and phosphorous were preferentially attached to the composite hydrogel surface to grow apatite crystal (Ca/P ratio 1.86) compared to attaching to the chitosan hydrogel (Ca/P ratio 1.48) in 21 days of testing.


Asunto(s)
Quitosano , Hidrogeles , Animales , Antibacterianos/química , Antibacterianos/farmacología , Apatitas , Materiales Biocompatibles/farmacología , Quitosano/química , Quitosano/farmacología , Escherichia coli , Hidrogeles/química , Hidrogeles/farmacología , Poliésteres , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA