Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7853): 195-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828315

RESUMEN

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Asunto(s)
Células/metabolismo , Edición Génica/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organización & administración , Animales , Terapia Genética , Objetivos , Humanos , Estados Unidos
2.
Nucleic Acids Res ; 49(1): 67-78, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33305328

RESUMEN

Gene-editing experiments commonly elicit the error-prone non-homologous end joining for DNA double-strand break (DSB) repair. Microhomology-mediated end joining (MMEJ) can generate more predictable outcomes for functional genomic and somatic therapeutic applications. We compared three DSB repair prediction algorithms - MENTHU, inDelphi, and Lindel - in identifying MMEJ-repaired, homogeneous genotypes (PreMAs) in an independent dataset of 5,885 distinct Cas9-mediated mouse embryonic stem cell DSB repair events. MENTHU correctly identified 46% of all PreMAs available, a ∼2- and ∼60-fold sensitivity increase compared to inDelphi and Lindel, respectively. In contrast, only Lindel correctly predicted predominant single-base insertions. We report the new algorithm MENdel, a combination of MENTHU and Lindel, that achieves the most predictive coverage of homogeneous out-of-frame mutations in this large dataset. We then estimated the frequency of Cas9-targetable homogeneous frameshift-inducing DSBs in vertebrate coding regions for gene discovery using MENdel. 47 out of 54 genes (87%) contained at least one early frameshift-inducing DSB and 49 out of 54 (91%) did so when also considering Cas12a-mediated deletions. We suggest that the use of MENdel helps researchers use MMEJ at scale for reverse genetics screenings and with sufficient intra-gene density rates to be viable for nearly all loss-of-function based gene editing therapeutic applications.


Asunto(s)
Algoritmos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mutación del Sistema de Lectura , Edición Génica/métodos , Terapia Genética/métodos , Genómica/métodos , Mutación INDEL , Mutación con Pérdida de Función , Genética Inversa/métodos , Animales , Proteínas Bacterianas/metabolismo , Caspasa 9/metabolismo , Conjuntos de Datos como Asunto , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Curva ROC , Streptococcus pyogenes/enzimología , Pez Cebra/genética
3.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982871

RESUMEN

Mitochondria are critical organelles that form networks within our cells, generate energy dynamically, contribute to diverse cell and organ function, and produce a variety of critical signaling molecules, such as cortisol. This intracellular microbiome can differ between cells, tissues, and organs. Mitochondria can change with disease, age, and in response to the environment. Single nucleotide variants in the circular genomes of human mitochondrial DNA are associated with many different life-threatening diseases. Mitochondrial DNA base editing tools have established novel disease models and represent a new possibility toward personalized gene therapies for the treatment of mtDNA-based disorders.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Edición Génica , Mitocondrias/genética , ADN Mitocondrial/genética , Terapia Genética
4.
Dev Dyn ; 251(8): 1267-1290, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35266256

RESUMEN

BACKGROUND: Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS: Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION: Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.


Asunto(s)
Células-Madre Neurales , Proteína 4 de Unión a Retinoblastoma , Proteína p53 Supresora de Tumor , Pez Cebra , Acetilación , Animales , Apoptosis/genética , Ciclo Celular/genética , Humanos , Células-Madre Neurales/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra
5.
Nucleic Acids Res ; 47(W1): W175-W182, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31127311

RESUMEN

The discovery and development of DNA-editing nucleases (Zinc Finger Nucleases, TALENs, CRISPR/Cas systems) has given scientists the ability to precisely engineer or edit genomes as never before. Several different platforms, protocols and vectors for precision genome editing are now available, leading to the development of supporting web-based software. Here we present the Gene Sculpt Suite (GSS), which comprises three tools: (i) GTagHD, which automatically designs and generates oligonucleotides for use with the GeneWeld knock-in protocol; (ii) MEDJED, a machine learning method, which predicts the extent to which a double-stranded DNA break site will utilize the microhomology-mediated repair pathway; and (iii) MENTHU, a tool for identifying genomic locations likely to give rise to a single predominant microhomology-mediated end joining allele (PreMA) repair outcome. All tools in the GSS are freely available for download under the GPL v3.0 license and can be run locally on Windows, Mac and Linux systems capable of running R and/or Docker. The GSS is also freely available online at www.genesculpt.org.


Asunto(s)
Bases de Datos Genéticas , Edición Génica , Ingeniería Genética/métodos , Programas Informáticos , Animales , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Humanos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética
6.
PLoS Genet ; 14(9): e1007652, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30208061

RESUMEN

One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Edición Génica/métodos , Modelos Genéticos , Algoritmos , Alelos , Animales , Estudios de Factibilidad , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/métodos , Células HeLa , Humanos , Masculino , Mutagénesis Sitio-Dirigida , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Pez Cebra
7.
Methods ; 150: 3-10, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076892

RESUMEN

The rapid growth of the field of gene editing can largely be attributed to the discovery and optimization of designer endonucleases. These include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regular interspersed short palindromic repeat (CRISPR) systems including Cas9, Cas12a, and structure-guided nucleases. Zebrafish (Danio rerio) have proven to be a powerful model system for genome engineering testing and applications due to their external development, high fecundity, and ease of housing. As the zebrafish gene editing toolkit continues to grow, it is becoming increasingly important to understand when and how to utilize which of these technologies for maximum efficacy in a particular project. While CRISPR-Cas9 has brought broad attention to the field of genome engineering in recent years, designer endonucleases have been utilized in genome engineering for more than two decades. This chapter provides a brief overview of designer endonuclease and other gene editing technologies in zebrafish as well as some of their known functional benefits and limitations depending on specific project goals. Finally, selected prospects for additional gene editing tools are presented, promising additional options for directed genomic programming of this versatile animal model system.


Asunto(s)
Desoxirribonucleasas/genética , Edición Génica/métodos , Pez Cebra/genética , Animales , Sistemas CRISPR-Cas/genética , Reparación del ADN/genética , Desoxirribonucleasas/metabolismo , Genoma/genética , Ingeniería de Proteínas
8.
J Transl Med ; 16(1): 84, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615090

RESUMEN

BACKGROUND: Mental illness contributes substantially to global disease burden, particularly when illness onset occurs during youth and help-seeking is delayed and/or limited. Yet, few mental health promotion interventions target youth, particularly those with or at high risk of developing mental illness ("at-risk" youth). Community-based translational research has the capacity to identify and intervene upon barriers to positive health outcomes. This is especially important for integrated care in at-risk youth populations. METHODS: Here the Integrated Science Education Outreach (InSciEd Out) program delivered a novel school-based anti-stigma intervention in mental health to a cohort of seventh and eighth grade at-risk students. These students were assessed for changes in mental health knowledge, stigmatization, and help-seeking intentions via a classroom activity, surveys, and teacher interviews. Descriptive statistics and Cohen's d effect sizes were employed to assess pre-post changes. Inferential statistical analyses were also conducted on pilot results to provide a benchmark to inform future studies. RESULTS: Elimination of mental health misconceptions (substance weakness p = 0.00; recovery p = 0.05; prevention p = 0.05; violent p = 0.05) was accompanied by slight gains in mental health literacy (d = 0.18) and small to medium improvements in help-seeking intentions (anxiety d = 0.24; depression d = 0.48; substance d = 0.43; psychosis d = 0.53). Within this particular cohort of students, stigma was exceptionally low at baseline and remained largely unchanged. Teacher narratives revealed positive teacher views of programming, increased student openness to talk about mental illness, and higher peer and self-acceptance of mental health diagnoses and help-seeking. CONCLUSIONS: Curricular-based efforts focused on mental illness in an alternative school setting are feasible and integrated well into general curricula under the InSciEd Out framework. Preliminary data suggest the existence of unique help-seeking barriers in at-risk youth. Increased focus upon community-based programming has potential to bridge gaps in translation, bringing this critical population to clinical care in pursuit of improved mental health for all. Trial registration ClinicalTrials.gov, ID:NCT02680899. Registered 12 February 2016, https://clinicaltrials.gov/ct2/show/NCT02680899.


Asunto(s)
Educación en Salud , Salud Mental , Instituciones Académicas , Adolescente , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Entrevistas como Asunto , Masculino , Aceptación de la Atención de Salud , Estigma Social , Encuestas y Cuestionarios
9.
Nature ; 491(7422): 114-8, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23000899

RESUMEN

The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease with a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino-based targeted gene knockdowns. With this updated TALEN system, we successfully used single-stranded DNA oligonucleotides to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair, including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.


Asunto(s)
Desoxirribonucleasas/metabolismo , Marcación de Gen/métodos , Ingeniería Genética/métodos , Genoma/genética , Pez Cebra/genética , Alelos , Animales , Sitios de Ligazón Microbiológica/genética , Secuencia de Bases , Cromosomas/genética , Roturas del ADN , ADN de Cadena Simple/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genómica/métodos , Genotipo , Mutación de Línea Germinal/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Reparación del ADN por Recombinación/genética
10.
J Cell Sci ; 128(19): 3556-68, 2015 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-26136364

RESUMEN

Vasculogenesis and angiogenesis are controlled by vascular endothelial growth factor A (VEGF-A). Dysregulation of these physiological processes contributes to the pathologies of heart disease, cancer and stroke. Rho GTPase proteins play an integral role in VEGF-mediated formation and maintenance of blood vessels. The regulatory functions of RhoA and RhoB in vasculogenesis and angiogenesis are well defined, whereas the purpose of RhoC remains poorly understood. Here, we describe how RhoC promotes vascular homeostasis by modulating endothelial cell migration, proliferation and permeability. RhoC stimulates proliferation of human umbilical vein endothelial cells (HUVECs) by stabilizing nuclear ß-catenin, which promotes transcription of cyclin D1 and subsequently drives cell cycle progression. RhoC negatively regulates endothelial cell migration through MAPKs and downstream MLC2 signaling, and decreases vascular permeability through downregulation of the phospholipase Cγ (PLCγ)-Ca(2+)-eNOS cascade in HUVECs. Using a VEGF-inducible zebrafish (Danio rerio) model, we observed significantly increased vascular permeability in RhoC morpholino (MO)-injected zebrafish compared with control MO-injected zebrafish. Taken together, our findings suggest that RhoC is a key regulator of vascular homeostasis in endothelial cells.


Asunto(s)
Células Endoteliales/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Humanos , Hibridación in Situ , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas de Unión al GTP rho/genética , Proteína rhoC de Unión a GTP
11.
Development ; 141(21): 4042-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25336735

RESUMEN

Recent advances in the targeted modification of complex eukaryotic genomes have unlocked a new era of genome engineering. From the pioneering work using zinc-finger nucleases (ZFNs), to the advent of the versatile and specific TALEN systems, and most recently the highly accessible CRISPR/Cas9 systems, we now possess an unprecedented ability to analyze developmental processes using sophisticated designer genetic tools. In this Review, we summarize the common approaches and applications of these still-evolving tools as they are being used in the most popular model developmental systems. Excitingly, these robust and simple genomic engineering tools also promise to revolutionize developmental studies using less well established experimental organisms.


Asunto(s)
Desoxirribonucleasas/metabolismo , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Desoxirribonucleasas/genética , Ingeniería Genética , Humanos , Mutación , Dedos de Zinc/genética , Dedos de Zinc/fisiología
12.
Hum Mutat ; 37(10): 1097-105, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397503

RESUMEN

Tyrosinemia type I (TYRSN1, TYR I) is caused by fumarylacetoacetate hydrolase (FAH) deficiency and affects approximately one in 100,000 individuals worldwide. Pathogenic variants in FAH cause TYRSN1, which induces cirrhosis and can progress to hepatocellular carcinoma (HCC). TYRSN1 is characterized by the production of a pathognomonic metabolite, succinylacetone (SUAC) and is included in the Recommended Uniform Screening Panel for newborns. Treatment intervention is effective if initiated within the first month of life. Here, we describe a family with three affected children who developed HCC secondary to idiopathic hepatosplenomegaly and cirrhosis during infancy. Whole exome sequencing revealed a novel homozygous missense variant in FAH (Chr15(GRCh38):g.80162305A>G; NM_000137.2:c.424A > G; NP_000128.1:p.R142G). This novel variant involves the catalytic pocket of the enzyme, but does not result in increased SUAC or tyrosine, making the diagnosis of TYRSN1 problematic. Testing this novel variant using a rapid, in vivo somatic mouse model showed that this variant could not rescue FAH deficiency. In this case of atypical TYRSN1, we show how reliance on SUAC as a primary diagnostic test can be misleading in some patients with this disease. Augmentation of current screening for TYRSN1 with targeted sequencing of FAH is warranted in cases suggestive of the disorder.


Asunto(s)
Carcinoma Hepatocelular/genética , Hidrolasas/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Mutación Missense , Tirosinemias/diagnóstico , Adolescente , Animales , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/patología , Dominio Catalítico , Línea Celular Tumoral , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Heptanoatos/metabolismo , Humanos , Hidrolasas/química , Lactante , Cirrosis Hepática/complicaciones , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Masculino , Ratones , Linaje , Análisis de Secuencia de ADN , Tirosina/metabolismo , Tirosinemias/complicaciones , Tirosinemias/genética
13.
Blood ; 123(16): 2518-29, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24591202

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) is expressed in human hematopoietic stem and progenitor cells (HSPCs) but its role during embryogenesis is unclear. In acute myeloid leukemia (AML), internal tandem duplication (ITD) of FLT3 at the juxtamembrane (JMD) and tyrosine kinase (TKD) domains (FLT3-ITD(+)) occurs in 30% of patients and is associated with inferior clinical prognosis. TKD mutations (FLT3-TKD(+)) occur in 5% of cases. We made use of zebrafish to examine the role of flt3 in developmental hematopoiesis and model human FLT3-ITD(+) and FLT3-TKD(+) AML. Zebrafish flt3 JMD and TKD were remarkably similar to their mammalian orthologs. Morpholino knockdown significantly reduced the expression of l-plastin (pan-leukocyte), csf1r, and mpeg1 (macrophage) as well as that of c-myb (definitive HSPCs), lck, and rag1 (T-lymphocyte). Expressing human FLT3-ITD in zebrafish embryos resulted in expansion and clustering of myeloid cells (pu.1(+), mpo(+), and cebpα(+)) which were ameliorated by AC220 and associated with stat5, erk1/2, and akt phosphorylation. Human FLT3-TKD (D835Y) induced significant, albeit modest, myeloid expansion resistant to AC220. This study provides novel insight into the role of flt3 during hematopoiesis and establishes a zebrafish model of FLT3-ITD(+) and FLT3-TKD(+) AML that may facilitate high-throughput screening of novel and personalized agents.


Asunto(s)
Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Tirosina Quinasa 3 Similar a fms/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia Conservada , Embrión no Mamífero , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Homología de Secuencia de Aminoácido , Secuencias Repetidas en Tándem , Transcriptoma , Pez Cebra/embriología , Proteínas de Pez Cebra/química , Tirosina Quinasa 3 Similar a fms/química
14.
Arterioscler Thromb Vasc Biol ; 35(4): 865-76, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25722433

RESUMEN

OBJECTIVE: The E26 transformation-specific domain transcription factor Etv2/Etsrp/ER71 is a master regulator of vascular endothelial differentiation during vasculogenesis, although its later role in sprouting angiogenesis remains unknown. Here, we investigated in the zebrafish model a role for Etv2 and related E26 transformation-specific factors, Fli1a and Fli1b in developmental angiogenesis. APPROACH AND RESULTS: Zebrafish fli1a and fli1b mutants were obtained using transposon-mediated gene trap approach. Individual fli1a and fli1b homozygous mutant embryos display normal vascular patterning, yet the angiogenic recovery observed in older etv2 mutant embryos does not occur in embryos lacking both etv2 and fli1b. Etv2 and fli1b double-deficient embryos fail to form any angiogenic sprouts and show greatly increased apoptosis throughout the axial vasculature. In contrast, fli1a mutation did not affect the recovery of etv2 mutant phenotype. Overexpression analyses indicate that both etv2 and fli1b, but not fli1a, induce the expression of multiple vascular markers and of each other. Temporal inhibition of Etv2 function using photoactivatable morpholinos indicates that the function of Etv2 and Fli1b during angiogenesis is independent from the early requirement of Etv2 during vasculogenesis. RNA-Seq analysis and chromatin immunoprecipitation suggest that Etv2 and Fli1b share the same transcriptional targets and bind to the same E26 transformation-specific sites. CONCLUSIONS: Our data argue that there are 2 phases of early vascular development with distinct requirements of E26 transformation-specific transcription factors. Etv2 alone is required for early vasculogenesis, whereas Etv2 and Fli1b function redundantly during late vasculogenesis and early embryonic angiogenesis.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Proteína Proto-Oncogénica c-fli-1/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas Angiogénicas/genética , Animales , Animales Modificados Genéticamente , Apoptosis , Sitios de Unión , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Morfolinos/metabolismo , Mutación , Fenotipo , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-fli-1/genética , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
Development ; 139(4): 793-804, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22274699

RESUMEN

The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity.


Asunto(s)
Región Branquial/embriología , Pronefro/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Evolución Biológica , Biomarcadores/metabolismo , Región Branquial/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Riñón/anatomía & histología , Morfogénesis/fisiología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Fenotipo , Pronefro/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
17.
J Virol ; 88(17): 9704-17, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942577

RESUMEN

UNLABELLED: HIV-1 utilizes the cellular protein LEDGF/p75 as a chromosome docking and integration cofactor. The LEDGF/p75 gene, PSIP1, is a potential therapeutic target because, like CCR5, depletion of LEDGF/p75 is tolerated well by human CD4+ T cells, and knockout mice have normal immune systems. RNA interference (RNAi) has been useful for studying LEDGF/p75, but the potent cofactor activity of small protein residua can be confounding. Here, in human cells with utility for HIV research (293T and Jurkat), we used transcription activator-like effector nucleases (TALENs) to completely eradicate all LEDGF/p75 expression. We performed two kinds of PSIP1 knockouts: whole-gene deletion and deletion of the integrase binding domain (IBD)-encoding exons. HIV-1 integration was inhibited, and spreading viral replication was severely impaired in PSIP1-/- Jurkat cells infected at high multiplicity. Furthermore, frameshifting the gene in the first coding exon with a single TALEN pair yielded trace LEDGF/p75 levels that were virologically active, affirming the cofactor's potency and the value of definitive gene or IBD exon segment deletion. Some recent studies have suggested that LEDGF/p75 may participate in HIV-1 assembly. However, we determined that assembly of infectious viral particles is normal in PSIP1-/- cells. The potency of an allosteric integrase inhibitor, ALLINI-2, for rendering produced virions noninfectious was also unaffected by total eradication of cellular LEDGF/p75. We conclude that HIV-1 particle assembly and the main ALLINI mechanism are LEDGF/p75 independent. The block to HIV-1 propagation in PSIP1-/- human CD4+ T cells raises the possibility of gene targeting PSIP1 combinatorially with CCR5 for HIV-1 cure. IMPORTANCE: LEDGF/p75 dependence is universally conserved in the retroviral genus Lentivirus. Once inside the nucleus, lentiviral preintegration complexes are thought to attach to the chromosome when integrase binds to LEDGF/p75. This tethering process is largely responsible for the 2-fold preference for integration into active genes, but the cofactor's full role in the lentiviral life cycle is not yet clear. Effective knockdowns are difficult because even trace residua of this tightly chromatin-bound protein can support integration cofactor function. Here, in experimentally useful human cell lines, we used TALENs to definitively eradicate LEDGF/p75 by deleting either all of PSIP1 or the exons that code for the integrase binding domain. HIV-1 replication was severely impaired in these PSIP1 knockout cells. Experiments in these cells also excluded a role for LEDGF/p75 in HIV-1 assembly and showed that the main ALLINI mechanism is LEDGF/p75 independent. Site-specific gene targeting of PSIP1 may have therapeutic potential for HIV-1 disease.


Asunto(s)
Técnicas de Inactivación de Genes , Integrasa de VIH/metabolismo , VIH-1/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Integración Viral , Replicación Viral , Línea Celular , Humanos , Proteínas del Tejido Nervioso/deficiencia , Ensamble de Virus
18.
Circ Res ; 113(5): 571-87, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23948583

RESUMEN

Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the postgenomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases.


Asunto(s)
Proteínas Bacterianas/fisiología , Enfermedades Cardiovasculares/genética , Desoxirribonucleasas de Localización Especificada Tipo II/fisiología , Desoxirribonucleasas/fisiología , Ingeniería Genética/métodos , Genómica , Células Madre Pluripotentes Inducidas/citología , Mutagénesis Sitio-Dirigida/métodos , Medicina de Precisión/tendencias , Xanthomonas/enzimología , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Enfermedades Cardiovasculares/terapia , Diferenciación Celular , Células Cultivadas/citología , Células Cultivadas/trasplante , ADN/genética , ADN/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Predicción , Genes Reporteros , Ingeniería Genética/tendencias , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Modelos Cardiovasculares , Modelos Genéticos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/fisiología , Reparación del ADN por Recombinación , Especificidad por Sustrato , Xanthomonas axonopodis/enzimología , Pez Cebra/genética
19.
Circ Res ; 112(4): 606-17, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23283723

RESUMEN

RATIONALE: Mutagenesis screening is a powerful genetic tool for probing biological mechanisms underlying vertebrate development and human diseases. However, the increased colony management efforts in vertebrates impose a significant challenge for identifying genes affecting a particular organ, such as the heart, especially those exhibiting adult phenotypes on depletion. OBJECTIVE: We aim to develop a facile approach that streamlines colony management efforts via enriching cardiac mutants, which enables us to screen for adult phenotypes. METHODS AND RESULTS: The transparency of the zebrafish embryos enabled us to score 67 stable transgenic lines generated from an insertional mutagenesis screen using a transposon-based protein trapping vector. Fifteen lines with cardiac monomeric red fluorescent protein reporter expression were identified. We defined the molecular nature for 10 lines and bred them to homozygosity, which led to the identification of 1 embryonic lethal, 1 larval lethal, and 1 adult recessive mutant exhibiting cardiac hypertrophy at 1 year of age. Further characterization of these mutants uncovered an essential function of methionine adenosyltransferase II, α a (mat2aa) in cardiogenesis, an essential function of mitochondrial ribosomal protein S18B (mrps18b) in cardiac mitochondrial homeostasis, as well as a function of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b) in adult cardiac hypertrophy. CONCLUSIONS: We demonstrate that transposon-based gene trapping is an efficient approach for identifying both embryonic and adult recessive mutants with cardiac expression. The generation of a zebrafish insertional cardiac mutant collection shall facilitate the annotation of a vertebrate cardiac genome, as well as enable heart-based adult screens.


Asunto(s)
Cardiomegalia/genética , Perfilación de la Expresión Génica , Genes Recesivos , Pruebas Genéticas/métodos , Mutagénesis Insercional , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Cruzamiento , Elementos Transponibles de ADN/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Letales , Genes Reporteros , Vectores Genéticos/genética , Genotipo , Corazón/embriología , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Especificidad de Órganos , Fenotipo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/fisiología , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA