Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 19(6): 52, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249718

RESUMEN

INTRODUCTION: Faba bean (Vicia faba L.) flowers are edible and used as garnishes because of their aroma, sweet flavor and attractive colors. Anthocyanins are the common plant pigments that give flowers their vivid colors, whereas non-anthocyanin flavonoids can serve as co-pigments that can modify the color intensity of flowers. OBJECTIVES: To explore the polyphenol diversity and differences in standard and wing petals of faba bean flowers; and identify glycosylated flavonoids that contribute to flower color. METHODS: Flower standard and wing petals from 30 faba bean genotypes (eight color groups with a total of 60 samples) were used for polyphenol extraction. Samples were analyzed using a targeted method and a semi-untargeted analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with photodiode array (PDA) detection. Compound Discoverer software was used for polyphenol identification and multivariate analysis. RESULTS: The semi-untargeted analysis guided by the PDA detected 90 flavonoid metabolites present in faba bean flower petals. Ten anthocyanins largely influenced the flower colors, but other flavonoids (63 flavonols and 12 flavones) found with variable levels in different flower color groups appeared to also influence color, especially in mixed colors. CONCLUSION: Analysis of the different colored faba bean flowers confirmed that the color variation between the flowers was mainly controlled by anthocyanins in brown, red and purple-red flowers. Of the other flavonoids, multiglycosylated kaempferols were abundant in white and brown flowers, monoglycosylated kaempferols were common in red and purple-red flowers, and quercetin and apigenin glycosides were abundant co-pigments in purple-red flowers.


Asunto(s)
Flavonoides , Vicia faba , Flavonoides/análisis , Antocianinas/análisis , Antocianinas/química , Antocianinas/metabolismo , Vicia faba/metabolismo , Quempferoles/análisis , Quempferoles/metabolismo , Metabolómica , Flores/metabolismo , Polifenoles/metabolismo
2.
Mol Pharm ; 20(9): 4443-4452, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37492942

RESUMEN

The high blood level of low-density lipoprotein cholesterol (LDL-C) is a primary risk factor for cardiovascular disease. Plant sterols, known as phytosterols (PSs), can reduce LDL-C in a range of 8-14%. The extent of LDL-C reduction depends on its formulation. Encapsulation into liposomes is one formulation strategy to enhance the efficiency of PSs. PSs (campesterol, stigmasterol, and ß-sitosterol) have frequently been assessed alone or in combination for their LDL-C-lowering ability. However, one naturally abundant PS, brassicasterol, has not yet been tested for its efficacy. We have previously developed a novel liposomal formulation containing the PS mixture present naturally in canola that is composed of brassicasterol, campesterol, and ß-sitosterol. In this work, the efficacy of our novel liposomal PS formulation that includes brassicasterol was assessed in a hamster model. Animals were divided into five groups: (i) liposomal PS in orange juice, (ii) liposomal PS in water, (iii) marketed PS in orange juice, (iv) control orange juice, and (v) control water. The animals were fed a high-fat, cholesterol-supplemented (0.5%) diet to induce hypercholesterolemia. The treatment was administered orally once daily for 4 weeks. Fasting blood samples were collected at baseline, week 2, and week 4. The extent of the reduction of total cholesterol, LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides was compared among the groups. Liposomal PSs in both orange juice and water significantly reduced LDL-C compared to their controls. Furthermore, the liposomal PS was as effective as a marketed PS-containing product in reducing LDL-C. Liposomal PSs in both orange juice and water showed similar efficacy in LDL-C reduction, highlighting that these vehicles/food matrices do not affect the efficacy of PSs. The liposomal formulation of a natural PS mixture extracted from canola oil, with brassicasterol as a major component, exhibited a significant LDL-C reduction in a hamster model.


Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Fitosteroles , Animales , LDL-Colesterol , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Liposomas , Fitosteroles/farmacología , Colesterol , Hipercolesterolemia/tratamiento farmacológico , Dieta
3.
Mass Spectrom Rev ; 40(1): 31-52, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617245

RESUMEN

Metabolomics is a dynamically evolving field, with a major application in identifying biomarkers for drug development and personalized medicine. Numerous metabolomic studies have identified endogenous metabolites that, in principle, are eligible for translation to clinical practice. However, few metabolomic-derived biomarker candidates have been qualified by regulatory bodies for clinical applications. Such interruption in the biomarker qualification process can be largely attributed to various reasons including inappropriate study design and inadequate data to support the clinical utility of the biomarkers. In addition, the lack of robust assays for the routine quantification of candidate biomarkers has been suggested as a potential bottleneck in the biomarker qualification process. In fact, the nature of the endogenous metabolites precludes the application of the current validation guidelines for bioanalytical methods. As a result, there have been individual efforts in modifying existing guidelines and/or developing alternative approaches to facilitate method validation. In this review, three main challenges for method development and validation for endogenous metabolites are discussed, namely matrix effects evaluation, alternative analyte-free matrices, and the choice of internal standards (ISs). Some studies have modified the equations described by the European Medicines Agency for the evaluation of matrix effects. However, alternative strategies were also described; for instance, calibration curves can be generated in solvents and in biological samples and the slopes can be compared through ratios, relative standard deviation, or a modified Stufour suggested approaches while quantifying mainly endogenous metabolitesdent t-test. ISs, on the contrary, are diverse; in which seven different possible types, used in metabolomics-based studies, were identified in the literature. Each type has its advantages and limitations; however, isotope-labeled ISs and ISs created through isotope derivatization show superior performance. Finally, alternative matrices have been described and tested during method development and validation for the quantification of endogenous entities. These alternatives are discussed in detail, highlighting their advantages and shortcomings. The goal of this review is to compare, apprise, and debate current knowledge and practices in order to aid researchers and clinical scientists in developing robust assays needed during the qualification process of candidate metabolite biomarkers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.


Asunto(s)
Cromatografía Liquida/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Desarrollo de Medicamentos/métodos , Humanos , Medicina de Precisión/métodos , Estudios de Validación como Asunto
4.
J Am Pharm Assoc (2003) ; 62(1): 176-186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34538771

RESUMEN

BACKGROUND: Pharmacists' roles and services for patients with substance use are not well defined and inconsistent from site to site. Several barriers have been identified that hinder pharmacists' care for people who use substances, such as a lack of training and resources. Clinical practice tools can aid in transferring evidence-based approaches to the practice sphere. OBJECTIVES: The aim of the study was to develop a substance misuse management toolkit for community pharmacists to help them manage their encounters with people who use substances. METHODS: A focused literature review was conducted and 2 needs assessment studies, one for community pharmacists and one for patients informed the development of the toolkit. The toolkit is an adaption of the screening, brief intervention, and referral to treatment (SBIRT) approach, which is one of the most well-defined and effective strategies for substance use management. However, SBIRT is a novel care model in community pharmacy settings. Therefore, a substance misuse management toolkit with 20 items was created for community pharmacists incorporating evidence-based strategies and clinical algorithms. Delphi procedure was used to validate the toolkit. RESULTS: Two rounds of questions were sent to experts in the field of substance misuse, some of whom were pharmacists. In both rounds, these experts were asked to rate the appropriateness and clarity of items in the toolkit and provide comments and suggestions. Items with a median rating of 7 or more out of 10 were included in the toolkit. In the second round, the experts were asked to rerate the revised version and provide additional feedback. After the second round, agreement was reached for almost all items of the toolkit. CONCLUSION: A Delphi procedure was successfully used to provide evidence of the validity of the new guiding toolkit for community pharmacists. The toolkit will be implemented and evaluated to provide additional evidence of validity in practice.


Asunto(s)
Servicios Comunitarios de Farmacia , Farmacias , Trastornos Relacionados con Sustancias , Humanos , Tamizaje Masivo , Farmacéuticos , Derivación y Consulta , Trastornos Relacionados con Sustancias/diagnóstico
5.
Rapid Commun Mass Spectrom ; 35(13): e9107, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33864637

RESUMEN

RATIONALE: Compounds in the taxane drug family are among the most successful and effective chemotherapeutic agents used in the treatment of solid tumors, such as breast, ovarian, and prostate cancers. The tandem mass spectrometric (MS/MS) fragmentation behavior of these compounds is described in detail, and a generalized MS/MS fingerprint is established for the first time. METHODS: Five compounds, namely paclitaxel, docetaxel, cabazitaxel, cephalomannine, and baccatin III, were evaluated. A hybrid quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometer was used to obtain accurate mass measurements, whereas MS/MS and second-generation MS/MS (MS3 ) analyses were performed using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were equipped with an electrospray ionization source operated in the positive ion mode. RESULTS: All taxanes showed an abundant singly charged [M + H]+ species in the single-stage analysis with mass accuracies less than 3 ppm. The evaluated compounds exhibited common fragmentation behavior in their MS/MS analysis, which allowed for the production of a universal fragmentation pattern. MS3 experiments confirmed the genesis of the various product ions proposed in the fragmentation pathway. In addition, diagnostic product ions were originated from a cleavage in the ester bond between the core diterpene ring structure and the side chain. CONCLUSIONS: Varying functional groups present in these compounds resulted in unique product ions that are specific to each structure. The established MS/MS fingerprints will be used in the near future for identification and for the development of multiple reaction monitoring liquid chromatography-MS/MS quantification methods.


Asunto(s)
Antineoplásicos/química , Espectrometría de Masas en Tándem/métodos , Taxoides/química , Alcaloides/química , Docetaxel/química , Estructura Molecular , Paclitaxel/química
6.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807675

RESUMEN

Phytosterols and tocopherols are commonly used in food and pharmaceutical industries for their health benefits. Current analysis methods rely on conventional liquid chromatography, using an analytical column, which can be tedious and time consuming. However, simple, and fast analytical methods can facilitate their qualitative and quantitative analysis. In this study, a fast chromatography-tandem mass spectrometric (FC-MS/MS) method was developed and validated for the quantitative analysis of phytosterols and tocopherols. Omitting chromatography by employing flow injection analysis-mass spectrometry (FIA-MS) failed in the quantification of target analytes due to analyte-to-analyte interferences from phytosterols. These interferences arise from their ambiguous MS fingerprints that would lead to false identification and inaccurate quantification. Therefore, a C18 guard column with a 1.9 µm particle size was employed for FC-MS/MS under isocratic elution using acetonitrile/methanol (99:1 v/v) at a flow rate of 600 µL/min. Analyte-to-analyte interferences were identified and eliminated. The false peaks could then be easily identified due to chromatographic separation. In addition, two internal standards were evaluated, namely cholestanol and deuterated cholesterol. Both internal standards contributed to the observed analyte-to-analyte interferences; however, adequate shift in the retention time for deuterated cholesterol eliminated its interferences and allowed for an accurate quantification. The method is fast (1.3 min) compared to published methods and can distinguish false peaks observed in FIA-MS. Seven analytes were quantified simultaneously, namely brassicasterol, campesterol, stigmasterol, ß-sitosterol, α-tocopherol, δ-tocopherol, and γ-tocopherol. The method was successfully applied in the quantitative analysis of phytosterols and tocopherols present in the unsaponifiable matter of canola oil deodorizer distillate (CODD). ß-sitosterol and γ-tocopherol were the most abundant phytosterols and tocopherols, respectively.


Asunto(s)
Cromatografía Liquida/métodos , Fitosteroles/análisis , Espectrometría de Masas en Tándem/métodos , Tocoferoles/análisis , Calibración , Fraccionamiento Químico , Cromatografía Liquida/instrumentación , Fitosteroles/aislamiento & purificación , Plantas/química , Reproducibilidad de los Resultados , Tocoferoles/aislamiento & purificación
7.
Molecules ; 26(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201792

RESUMEN

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Asunto(s)
Antioxidantes/análisis , Cicer/química , Quelantes del Hierro/química , Lens (Planta)/química , Metabolómica/métodos , Polifenoles/análisis , Semillas/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análisis , Disponibilidad Biológica , Catequina/análisis , Correlación de Datos , Flavonoides/análisis , Flavonoles/análisis , Concentración 50 Inhibidora , Espectrometría de Masas , Fenoles/análisis , Proantocianidinas/análisis , Taninos/análisis
8.
Anal Chem ; 92(13): 8628-8637, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32510944

RESUMEN

Mass spectrometry (MS) in hyphenated techniques is widely accepted as the gold standard quantitative tool in life sciences. However, MS possesses intrinsic analytical capabilities that allow it to be a stand-alone quantitative technique, particularly with current technological advancements. MS has a great potential for simplifying quantitative analysis without the need for tedious chromatographic separation. Its selectivity relies on multistage MS analysis (MSn), including tandem mass spectrometry (MS/MS), as well as the ever-growing advancements of high-resolution MS instruments. This perspective describes various analytical platforms that utilize MS as a stand-alone quantitative technique, namely, flow injection analysis (FIA), matrix assisted laser desorption ionization (MALDI), including MALDI-MS imaging and ion mobility, particularly high-field asymmetric waveform ion mobility spectrometry (FAIMS). When MS alone is not capable of providing reliable quantitative data, instead of conventional liquid chromatography (LC)-MS, the use of a guard column (i.e., fast chromatography) may be sufficient for quantification. Although the omission of chromatographic separation simplifies the analytical process, extra procedures may be needed during sample preparation and clean-up to address the issue of matrix effects. The discussion of this manuscript focuses on key parameters underlying the uniqueness of each technique for its application in quantitative analysis without the need for a chromatographic separation. In addition, the potential for each analytical strategy and its challenges are discussed as well as improvements needed to render them as mainstream quantitative analytical tools. Overcoming the hurdles for fully validating a quantitative method will allow MS alone to eventually become an indispensable quantitative tool for clinical and toxicological studies.


Asunto(s)
Espectrometría de Masas/métodos , Colesterol/análogos & derivados , Colesterol/análisis , Cromatografía Líquida de Alta Presión , Análisis de Inyección de Flujo , Espectrometría de Movilidad Iónica , Límite de Detección , Fitosteroles/análisis , Sitoesteroles/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Rapid Commun Mass Spectrom ; 33(23): 1792-1803, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351020

RESUMEN

RATIONALE: Novel bifunctional compounds composed of a caffeine scaffold attached to nicotine (C8 -6-N), 1-aminoindan (C8 -6-I), or caffeine (C8 -6-C8 ) were designed as therapeutics or diagnostics for Parkinson's disease (PD). In order to probe their pharmacological and toxicological profile, an appropriate analytical method is required. The goal of this study is to establish a tandem mass spectrometric fingerprint for the development of quantitative and qualitative methods that will aid future assessment of the in vitro and in vivo absorption, distribution, metabolism, excretion (ADME) and pharmacokinetic properties of these lead bifunctional compounds for PD. METHODS: Accurate mass measurement was performed using a hybrid quadrupole orthogonal time-of-flight mass spectrometer while multistage MS/MS and MS3 analyses were conducted using a triple quadrupole linear ion trap mass spectrometer. Both instruments are equipped with an electrospray ionization (ESI) source and were operated in the positive ion mode. The source and compound parameters were optimized for all three tested bifunctional compounds. RESULTS: The MS/MS analysis indicates that the fragmentation of C8 -6-N and C8 -6-I is driven by the dissociation of the nicotine and 1-aminoindan moieties, respectively, but not caffeine. A significant observation in the MS/MS fragmentation of C8 -6-C8 suggests that a previously reported loss of acetaldehyde during caffeine dissociation is instead a loss of CO2 . CONCLUSIONS: The collision-induced tandem mass spectrometry (CID-MS/MS) analysis of these novel bifunctional compounds revealed compound-specific diagnostic product ions and neutral losses for all three tested bifunctional compounds. The established MS/MS fingerprint will be applied to the future development of qualitative and quantitative methods.


Asunto(s)
Cafeína/análogos & derivados , Indanos/química , Nicotina/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Espectrometría de Masa por Ionización de Electrospray/métodos
10.
Can J Anaesth ; 66(7): 803-812, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30877585

RESUMEN

PURPOSE: Hyperbaric bupivacaine (0.75% in dextrose) is used for spinal obstetric anesthesia. Occasional clusters of anesthetic failures occur in this setting, not readily attributable to clinical factors. We hypothesized that cold temperature exposure is related to bupivacaine instability. METHODS: An electronic survey was distributed to Canadian anesthesiologists to determine consistencies in spinal anesthesia practice, and to invite submission of failed bupivacaine samples for analysis. Another survey for hospital pharmacists focused on bupivacaine logistics. Ultraviolet (UV) spectrometry, differential scanning calorimetry, and high performance liquid chromatography were used to evaluate the effect of temperature on bupivacaine chemical stability. Mass spectrometry (MS) was used to observe bupivacaine and dextrose degradation in laboratory samples of hyperbaric 0.75% bupivacaine in dextrose. Hyperbaric bupivacaine that failed to produce adequate anesthesia in labour and delivery patients was subject to tandem MS/MS analysis on commonly observed ions to look for ion patterns consistent with bupivacaine degradation products and to compare with laboratory samples subjected to cold temperatures. RESULTS: Canadian obstetric anesthesiologists report similar practices and use hyperbaric bupivacaine for spinal anesthesia. Pharmacists surveyed indicated facility storage at room temperature but variable temperatures during shipping. No standard procedure for failure reporting was identified. Analysis of bupivacaine showed a slight decrease in bupivacaine concentration or UV spectral changes after incubation at temperatures ≤ 4°C. Mass spectrometric analysis of hyperbaric bupivacaine from failed spinal anesthesia cases showed complex and inconsistent patterns of ion formation, and different from the ion patterns observed for cooled vs uncooled bupivacaine solutions. Temperature-related changes were noted for dextrose in cooled samples in which dextrose-related ions were formed. CONCLUSIONS: Canadian clinical practice and handling of hyperbaric bupivacaine is consistent. Most respondents indicated an interest in a formal reporting and collection process. Cold exposure did not degrade bupivacaine. A complex and possibly inconsistent reaction involving dextrose was identified that requires further analysis of a larger sample size to elucidate the mechanisms.


RéSUMé: OBJECTIF: La bupivacaïne hyperbare (0,75 % dans du dextrose) est utilisée pour l'anesthésie obstétricale rachidienne. Il arrive parfois que plusieurs anesthésies rapprochées soient inefficaces dans cette situation, et ces échecs ne sont pas nécessairement attribuables à des facteurs cliniques. Nous avons émis l'hypothèse qu'une exposition de la bupivacaïne au froid expliquerait son instabilité. MéTHODE: Un sondage électronique a été distribué aux anesthésiologistes canadiens afin de déterminer les similitudes dans la pratique de la rachianesthésie, et nous avons invité les médecins à nous envoyer des échantillons de bupivacaïne à des fins d'analyse lorsque leur anesthésie était inefficace. Un autre sondage, envoyé aux pharmaciens hospitaliers, mettait l'emphase sur la logistique entourant la manutention de la bupivacaïne. Nous avons utilisé une spectrométrie de rayons ultraviolets (UV), une analyse calorimétrique différentielle et une chromatographie liquide à haute performance afin d'évaluer l'effet de la température sur la stabilité chimique de la bupivacaïne. Une spectrométrie de masse (SM) a été utilisée pour observer la dégradation de la bupivacaïne et du dextrose dans des échantillons de laboratoire de bupivacaïne hyperbare 0,75 % dans le dextrose. La bupivacaïne hyperbare qui n'a pas procuré une anesthésie adéquate chez des patientes en travail ou en accouchement a été sujette à une analyse de SM/SM en tandem sur les ions fréquemment observés afin d'identifier des modèles ioniques correspondant aux produits de dégradation de la bupivacaïne et les comparer à des échantillons de laboratoire soumis au froid. RéSULTATS: Les anesthésiologistes obstétricaux canadiens font état de pratiques semblables et utilisent de la bupivacaïne hyperbare pour réaliser une rachianesthésie. Les pharmaciens interrogés ont indiqué que la bupivacaïne était entreposée à température ambiante au sein de leur établissement mais qu'elle était exposée à des températures variables pendant l'expédition. Aucune procédure standardisée n'a été identifiée pour rapporter les échecs d'anesthésie. L'analyse de la bupivacaïne a montré une légère réduction dans la concentration de bupivacaïne ou des changements spectraux UV après une période d'incubation à des températures ≤ 4°C. L'analyse par spectrométrie de masse des échantillons de bupivacaïne hyperbare utilisés lors d'échecs de la rachianesthésie a révélé des types de formation des ions complexes et incohérents, lesquels différaient des modèles des ions observés dans les solutions de bupivacaïne refroidies vs non refroidies. Les changements liés à la température ont été notés sur le dextrose dans les échantillons refroidis dans lesquels des ions liés au dextrose se sont formés. CONCLUSION: La pratique clinique canadienne et la manutention de la bupivacaïne hyperbare est homogène. La plupart des répondants ont indiqué être intéressés par un processus formel d'enregistrement et de récolte des données. L'exposition au froid n'a pas dégradé la bupivacaïne. Une réaction complexe et possiblement inconstante ayant un rapport avec le dextrose a été identifiée; elle requiert des analyses approfondies sur un échantillonnage plus important afin d'en élucider les mécanismes.


Asunto(s)
Anestesia Obstétrica/métodos , Anestesia Raquidea/métodos , Anestésicos Locales/administración & dosificación , Bupivacaína/administración & dosificación , Anestesiólogos/estadística & datos numéricos , Anestésicos Locales/química , Bupivacaína/química , Frío , Estudios Transversales , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Femenino , Glucosa/química , Humanos , Farmacéuticos/estadística & datos numéricos , Embarazo , Encuestas y Cuestionarios
11.
Can Pharm J (Ott) ; 152(2): 117-129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886664

RESUMEN

BACKGROUND: Identifying the skills and educational needs of community pharmacists concerning addiction is critical to improving the services provided for people who suffer from addiction disease (PWSAD). METHODS: Eleven one-to-one semi-structured interviews were conducted with community pharmacists practising in the Saskatoon Health Region, Canada. The interviews were recorded and transcribed verbatim and verified with the participants. Thematic analysis was employed to analyze the transcripts. RESULTS: Four major themes were identified: 1) effect of the work setting on pharmacists' encounters with PWSAD, 2) pharmacists' knowledge of key aspects of addiction, 3) level of support within the health care system, and 4) educational and training needs. CONCLUSION: Participants indicated that a lack of knowledge and training were major hindrances to improving the quality of the services provided to people who suffer from addiction disease. Additional practicum experience at the undergraduate level and interprofessional interactive educational sessions at the continuing educational level were key recommendations emerging from the study.

13.
Mass Spectrom Rev ; 36(2): 115-134, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-25881008

RESUMEN

Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing potentially diagnostic urinary biomarkers are discussed. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:115-134, 2017.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Urinálisis/métodos , Animales , Biomarcadores/análisis , Biomarcadores/orina , Humanos , Marcaje Isotópico/métodos , Metaboloma
14.
Bioconjug Chem ; 29(10): 3293-3308, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169953

RESUMEN

The unique molecular structure confers the diquaternary ammonium gemini surfactants with enhanced nucleic acid complexation ability, bottom-up design flexibility, and relatively low cytotoxicity. To capitalize on their potential as gene delivery vectors, novel structural modifications should be explored. In this work, 22 novel peptide-modified gemini surfactants with various alkyl tails and peptide spacer modifications were evaluated. This work represents the first report of dendrimer-like gemini surfactants and first evaluation of the impact of incorporating a hydrocarbon linker into the peptide chain. Our aim was to establish a structure activity relationship of the peptide-modified gemini surfactants and to identify the fundamental architectural requirements needed for the ultimate gene delivery systems. In vitro assessment revealed that the highest transfection efficiency and lowest cytotoxicity were associated with the glycyl-lysine modified gemini surfactants having the hexadecyl tail, 16-7N(G-K)-16. In fact, it showed an 8-fold increase in secreted protein with 20% increase in cell viability relative to the first-generation unsubstituted gemini surfactants. Further increase in the size of the attached peptides resulted in a decrease in the transfection efficiency and cell viability. Whereas the incorporation of a hydrocarbon linker into the peptide chain decreased the transfection efficiency of compounds with dipeptides, it increased the transfection efficiency of compounds with larger peptide chains. Such an increase was more prominent with the incorporation of a longer hydrocarbon linker. We conclude that a balance between the hydrophilic and hydrophobic characteristics of the compound is necessary since it results in physicochemical parameters conducive to the gene delivery process.


Asunto(s)
Técnicas de Transferencia de Gen , Péptidos/química , Tensoactivos/química , Animales , Línea Celular , Supervivencia Celular , Dipéptidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Estructura Molecular
15.
Metabolomics ; 14(9): 115, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30830407

RESUMEN

INTRODUCTION: Urine is an ideal matrix for metabolomics investigation due to its non-invasive nature of collection and its rich metabolite content. Despite the advancements in mass spectrometry and 1H-NMR platforms in urine metabolomics, the statistical analysis of the generated data is challenged with the need to adjust for the hydration status of the person. Normalization to creatinine or osmolality values are the most adopted strategies, however, each technique has its challenges that can hinder its wider application. We have been developing targeted urine metabolomic methods to differentiate two important respiratory diseases, namely asthma and chronic obstructive pulmonary disease (COPD). OBJECTIVE: To assess whether the statistical model of separation of diseases using targeted metabolomic data would be improved by normalization to osmolality instead of creatinine. METHODS: The concentration of 32 metabolites was previously measured by two liquid chromatography-tandem mass spectrometry methods in 51 human urine samples with either asthma (n = 25) or COPD (n = 26). The data was normalized to creatinine or osmolality. Statistical analysis of the normalized values in each disease was performed using partial least square discriminant analysis (PLS-DA). Models of separation of diseases were compared. RESULTS: We found that normalization to creatinine or osmolality did not significantly change the PLS-DA models of separation (R2Q2 = 0.919, 0.705 vs R2Q2 = 0.929, 0.671, respectively). The metabolites of importance in the models remained similar for both normalization methods. CONCLUSION: Our findings suggest that targeted urine metabolomic data can be normalized for hydration using creatinine or osmolality with no significant impact on the diagnostic accuracy of the model.


Asunto(s)
Asma/metabolismo , Asma/orina , Creatinina/orina , Metabolómica , Concentración Osmolar , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/orina , Asma/diagnóstico , Creatinina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico
16.
Anal Bioanal Chem ; 410(23): 5899-5913, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30006724

RESUMEN

Targeted metabolomics requires accurate and precise quantification of candidate biomarkers, often through tandem mass spectrometric (MS/MS) analysis. Differential isotope labeling (DIL) improves mass spectrometric (MS) analysis in metabolomics by derivatizing metabolites with two isotopic forms of the same reagent. Despite its advantages, DIL-liquid chromatographic (LC)-MS/MS can result in substantial increase in workload when fully validated quantitative methods are required. To decrease the workload, we hypothesized that single point calibration or relative quantification could be used as alternative methods. Either approach will result in significant saving in resources and time. To test our hypothesis, six urinary metabolites were selected as model compounds. Urine samples were analyzed using a fully validated multipoint dansyl chloride-DIL-LC-MS/MS method. Samples were reprocessed using single point calibration and relative quantification modes. Our results demonstrated that the performance of single point calibration or relative quantification was inferior, for some metabolites, to multipoint calibration. The lower limit of quantification failed in the quantification of ethanolamine in most of participant samples using single point calibration. In addition, its precision was not acceptable in one participant during serine and ethanolamine quantification. On the other hand, relative quantification resulted in the least accurate data. In fact, none of the data generated from relative quantification for serine was comparable to that obtained from multipoint calibration. Finally, while single point calibration showed an overall acceptable performance for the majority of the model compounds, we cannot extrapolate the findings to other metabolites within the same analytical run. Analysts are advised to assess accuracy and precision for each metabolite in which single point calibration is the intended quantification mean.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Orina/química , Adulto , Calibración , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Dansilo/química , Etanolamina/orina , Humanos , Marcaje Isotópico/métodos , Masculino , Serina/orina
17.
Rapid Commun Mass Spectrom ; 31(18): 1481-1490, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28667829

RESUMEN

RATIONALE: The use of the anticancer drug melphalan is limited due to its poor water solubility. To address this limitation, it is incorporated within a novel delivery system using ß-cyclodextrin-gemini surfactants (18:1ßCDg). METHODS: Herein, two fast and simple flow injection analysis/tandem mass spectrometric (FIA-MS/MS) methods are developed for the quantification of melphalan (Mel) within the drug delivery system so that the solubilization efficiency of the system can be assessed. FIA-MS/MS methods are developed using a triple quadrupole linear ion trap mass spectrometer, equipped with electrospray ionization (ESI) in the positive ion mode. A deuterated form of melphalan (melphalan-d8) was used as an internal standard (IS). The methods were validated according to the FDA guidance. RESULTS: A linearity in the range of 2-100 ng/mL and accuracy and precision below 15% were observed for all standard points and quality control samples. The intra- and inter-day variations and freeze-thaw stability were within the acceptable range according to the criteria set by regulatory guidelines. On the other hand, other stability measures, such as room temperature stability and long-term stability, did not meet the required guidelines in some cases, indicating the need for quick sample analysis upon preparation. Such a fact could have been overlooked if full method validation had not been performed. CONCLUSIONS: The developed methods were applied to determine the encapsulation/solubilization of the [18:1ßCDg/Mel] delivery system. 18:1ßCDg enhances the aqueous solubility of melphalan without the need for co-solvent. The highest melphalan solubility was observed at a melphalan18:1ßCDg/Mel complex molar ratio of 2:1. This study demonstrated that a fast analysis for the purpose of quantifying a chemically unstable drug, such as melphalan, is feasible and important for the development of commercial dosage forms.


Asunto(s)
Antineoplásicos/química , Análisis de Inyección de Flujo/métodos , Lípidos/química , Melfalán/química , Espectrometría de Masas en Tándem/métodos , Sistemas de Liberación de Medicamentos , Sensibilidad y Especificidad , Solubilidad , Espectrometría de Masa por Ionización de Electrospray/métodos
18.
Mass Spectrom Rev ; 32(6): 466-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23775620

RESUMEN

With the fast growing market of pure enantiomer drugs and bioactive molecules, new chiral-selective analytical tools have been instigated including the use of mass spectrometry (MS). Even though MS is one of the best analytical tools that has efficiently been used in several pharmaceutical and biological applications, traditionally MS is considered as a "chiral-blind" technique. This limitation is due to the MS inability to differentiate between two enantiomers of a chiral molecule based merely on their masses. Several approaches have been explored to assess the potential role of MS in chiral analysis. The first approach depends on the use of MS-hyphenated techniques utilizing fast and sensitive chiral separation tools such as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis (CE) coupled to MS detector. More recently, several alternative separation techniques have been evaluated such as supercritical fluid chromatography (SFC) and capillary electrochromatography (CEC); the latter being a hybrid technique that combines the efficiency of CE with the selectivity of LC. The second approach is based on using the MS instrument solely for the chiral recognition. This method depends on the behavioral differences between enantiomers towards a foreign molecule and the ability of MS to monitor such differences. These behavioral differences can be divided into three types: (i) differences in the enantiomeric affinity for association with the chiral selector, (ii) differences of the enantiomeric exchange rate with a foreign reagent, and (iii) differences in the complex MS dissociation behaviors of the enantiomers. Most recently, ion mobility spectrometry was introduced to qualitatively and quantitatively evaluate chiral compounds. This article provides an overview of MS role in chiral analysis by discussing MS based methodologies and presenting the challenges and promises associated with each approach.


Asunto(s)
Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/química , Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Espectrometría de Masas/instrumentación , Estereoisomerismo
19.
Rapid Commun Mass Spectrom ; 28(7): 757-72, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24573807

RESUMEN

RATIONALE: This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel ß-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the ß-cyclodextrin-substituted gemini surfactants, a ß-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer. METHODS: Detection of the precursor ion [M](2+) species of the synthesized compounds and the determination of mass accuracies were conducted using a QqTOF-MS instrument. A multi-stage tandem MS analysis of the detected [M](2+) species was conducted using the QqQ-LIT-MS instrument. Both instruments were equipped with an electrospray ionization (ESI) source. RESULTS: Abundant precursor ion [M](2+) species were detected for all compounds at sub-1 ppm mass accuracies. The ß-cyclodextrin-substituted compounds, fragmented via two main pathways: Pathway 1: the loss of one head-tail region produces a [M-(N(Me)2-R)](2+) ion, from which sugar moieties (Glc) are sequentially cleaved; Pathway 2: both head-tail regions are lost to give [M-2(N(Me)2-R)](+), followed by consecutive loss of Glc units. Alternatively, the cleavage of the Glc units could also have occurred simultaneously. Nevertheless, the fragmentation evolved around the quaternary ammonium cations, with characteristic cleavage of Glc moieties. For the bis-pyridinium gemini compounds, they either lost neutral pyridine(s) to give doubly charged ions (Pathway A) or formed complementary pyridinium alongside other singly charged ions (Pathway B). Similar to ß-cyclodextrin-substituted compounds, the fragmentation was centered on the pyridinium functional groups. CONCLUSIONS: The MS(n) analyses of these novel gemini surfactants, reported here for the first time, revealed diagnostic ions for each compound, with a universal fragmentation pattern for each compound series. The diagnostic ions will be employed within liquid chromatography (LC)/MS/MS methods for screening, identification, and quantification of these compounds within biological samples.


Asunto(s)
Portadores de Fármacos/química , Compuestos de Piridinio/química , Tensoactivos/química , Espectrometría de Masas en Tándem/métodos , beta-Ciclodextrinas/química , Iones/química , Modelos Moleculares , Nanomedicina
20.
J Pharm Biomed Anal ; 223: 115114, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36347105

RESUMEN

Docetaxel is among the most effective chemotherapeutic agents used for the treatment of solid tumors, such as breast cancer. Targeting docetaxel to the tumor site would increase the safety and efficacy of the treatment. The focus of this work was to develop an efficient liquid chromatography tandem mass spectrometry (LC-MS/MS) method to quantify docetaxel entrapped in optimized poly lactic-co-glycolic acid (PLGA) nanoparticles. Several nanoparticle formulations were prepared to optimize the nanoparticles based on their size and yield percentage using a modified solvent evaporation technique. The MS/MS fingerprints of docetaxel and paclitaxel (as internal standard) were used to identify diagnostic product ion for developing a multiple reaction monitoring (MRM) LC-MS/MS method for the quantification of docetaxel in the PLGA nanoparticles. A triple quadrupole linear ion trap instrument (AB Sciex 4000 QTRAP) equipped with electrospray ionization was used. The optimized nanoparticles had a zeta potential of -23.2 ± 1.4 mV and mean particle sizes of 202.2 ± 4.7 nm and 251.7 ± 8.2 nm before and after freeze-drying, respectively. Polydispersity index values of the nanoparticles confirmed their uniform size distribution. The developed LC-MS/MS method could quantify docetaxel in the PLGA matrix with accuracy and precision covering a broad linear range of 15.6-4000 ng/mL. Method validation was conducted using the regulatory guidelines of the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and showed acceptable values for all the tested criteria. The developed LC-MS/MS method with the novelty of using a phenyl column will be beneficial for future analysis of docetaxel loaded polymeric nano-delivery systems.


Asunto(s)
Nanopartículas , Neoplasias , Estados Unidos , Humanos , Docetaxel , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Glicoles , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA