Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Chem ; 82(6): 2505-11, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20178370

RESUMEN

This manuscript describes a straightforward fabrication process for embedding Ag/AgCl electrodes within a two-layer poly(dimethylsiloxane) (PDMS) microfluidic chip where an upper and a lower channel are separated by a semiporous membrane. This system allows for the reliable real-time measurement of transendothelial and transepithelial electrical resistance (TEER), an accepted quantification of cell monolayer integrity, across cells cultured on membranes inside the microchannels using impedance spectroscopy. The technique eliminates the need for costly or specialized microelectrode fabrication, enabling commercially available wire electrodes to easily be incorporated into PDMS microsystems for measuring TEER under microfluidic environments. The capability of measuring impedance across a confluent cell monolayer is confirmed using (i) brain-derived endothelial cells (bEND.3), (ii) Madin Darby Canine Kidney Cells (MDCK-2), and mouse myoblast (C2C12) (all from ATCC, Manassas, VA). TEER values as a function of cell type and cell culture time were measured and both agree with previously published values from macroscale culture techniques. This system opens new opportunities for conveniently resolving both transendothelial and transepithelial electrical resistance to monitor cell function in real-time in microfluidic cell cultures.


Asunto(s)
Impedancia Eléctrica , Electroquímica/instrumentación , Endotelio/metabolismo , Células Epiteliales/metabolismo , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Línea Celular , Dimetilpolisiloxanos/química , Electrodos , Diseño de Equipo , Membranas Artificiales
2.
Mol Pharm ; 7(6): 2006-19, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-20957996

RESUMEN

Effective treatment of solid tumors requires homogeneous distribution of anticancer drugs within the entire tumor volume to deliver lethal concentrations to resistant cancer cells and tumor-initiating cancer stem cells. However, penetration of small molecular weight chemotherapeutic agents and drug-loaded polymeric and lipid particles into the hypoxic and necrotic regions of solid tumors remains a significant challenge. This article reports the results of pulsed ultrasound enhanced penetration of nanosized fluorescent particles into MCF-7 breast cancer spheroids (300-350 µm diameter) as a function of particle size and charge. With pulsed ultrasound application in the presence of microbubbles, small (20 nm) particles achieve 6-20-fold higher penetration and concentration in the spheroid's core compared to those not exposed to ultrasound. Increase in particle size to 40 and 100 nm results in their effective penetration into the spheroid's core to 9- and 3-fold, respectively. In addition, anionic carboxylate particles achieved higher penetration (2.3-, 3.7-, and 4.7-fold) into the core of MCF-7 breast cancer spheroids compared to neutral (2.2-, 1.9-, and 2.4-fold) and cationic particles (1.5-, 1.4-, and 1.9-fold) upon US exposure for 30, 60, and 90 s under the same experimental conditions. These results demonstrate the feasibility of utilizing pulsed ultrasound to increase the penetration of nanosized particles into MCF-7 spheroids mimicking tumor tissue. The effects of particle properties on the penetration enhancement were also illustrated.


Asunto(s)
Neoplasias de la Mama/química , Sistemas de Liberación de Medicamentos , Microburbujas , Nanopartículas/química , Esferoides Celulares/química , Terapia por Ultrasonido , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Fluorescencia , Humanos , Modelos Biológicos , Tamaño de la Partícula , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Propiedades de Superficie , Células Tumorales Cultivadas
4.
Adv Drug Deliv Rev ; 57(15): 2163-76, 2005 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-16289433

RESUMEN

This article summarizes our efforts to evaluate the potential of poly (amidoamine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the permeability of a series of cationic PAMAM-NH2 (G0-G4) dendrimers across Caco-2 cell monolayers was evaluated as a function of dendrimer generation, concentration, and incubation time. The influence of dendrimer surface charge on the integrity, paracellular permeability, and viability of Caco-2 cell monolayers was monitored by measuring the transepithelial electrical resistance (TEER), 14C-mannitol permeability, and leakage of lactate dehydrogenase (LDH) enzyme, respectively. Microvascular extravasation of PAMAM-NH2 dendrimers in relation to their size, molecular weight, and molecular geometry is also discussed. Results of these studies show that transepithelial transport and microvascular extravasation of PAMAM dendrimers are dependent on their structural features including molecular size, molecular geometry, and surface chemistry. These results suggest that by optimizing the size and surface charge of PAMAM dendrimers, it is possible to develop oral delivery systems based on these carriers for targeted drug delivery.


Asunto(s)
Dendrímeros/farmacocinética , Poliaminas/farmacocinética , Animales , Transporte Biológico Activo , Capilares/metabolismo , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Epitelio/metabolismo , Humanos
5.
J Control Release ; 104(2): 417-27, 2005 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15984055

RESUMEN

Limited cytoplasmic delivery of enzyme-susceptible drugs remains a significant challenge facing the development of protein and nucleic acid therapies that act in intracellular compartments. "Smart" pH-responsive, membrane-destabilizing polymers present a new approach to shuttling therapeutic molecules past the endosomal membrane and into the cytoplasm of targeted cells. This report describes the use of a functionalized monomer, pyridyl disulfide acrylate (PDSA), to develop pH-responsive, membrane-destabilizing, and glutathione-reactive polymers by copolymerization with several pH-responsive and hydrophobic monomers. The activity of the carriers is described as a function of (a) increasing the length of the hydrophobic alkyl group substituted onto the pH-responsive monomer and (b) the incorporation of a hydrophobic monomer such as butyl acrylate (BA) on the pH sensitivity and membrane-destabilizing activity of new polymer compositions. The membrane-destabilizing activity of different polymer compositions was evaluated as a function of pH and polymer concentration using the red blood cell (RBC) hemolysis assay. Hemolysis results show that the increase in the hydrophobic character of the polymer backbone results in a shift in the pH sensitivities and an increase in the membrane-destabilizing activity. Results show that the observed hemolytic activities and pH sensitivity profiles could be designed across a range that matches the properties needed for enhancing the cytoplasmic delivery of macromolecular therapeutic.


Asunto(s)
Acrilatos/síntesis química , Disulfuros/síntesis química , Diseño de Fármacos , Glutatión/metabolismo , Polímeros/síntesis química , Acrilatos/farmacología , Membrana Celular/efectos de los fármacos , Disulfuros/farmacología , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Polímeros/farmacología
6.
J Control Release ; 101(1-3): 47-58, 2005 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-15588893

RESUMEN

Limited cytoplasmic delivery of enzyme-susceptible drugs remains a significant challenge facing the development of protein and nucleic acid therapies that act in intracellular compartments. "Smart" pH-sensitive, membrane-destabilizing polymers present an attractive approach to shuttle therapeutic molecules past the endosomal membrane and into the cytoplasm of targeted cells. This report describes the use of a new functionalized monomer, pyridyl disulfide acrylate (PDSA), to develop pH-sensitive, membrane-destabilizing, and glutathione-reactive polymers by copolymerization with several pH-sensitive and hydrophobic monomers. The activity of the carriers is described as a function of (a) the influence of increasing the length of the hydrophobic alkyl group substituted onto the pH-sensitive monomer and (b) of the effect of incorporating a hydrophobic monomer such as butyl acrylate (BA) on the pH sensitivity and membrane-destabilizing activity of new polymer compositions. The membrane-destabilizing activity of different polymer compositions was evaluated as a function of pH and polymer concentration using the red blood cells (RBC) hemolysis assay. Hemolysis results show that the increase in the hydrophobic character of polymer backbone results in a shift in the pH sensitivity profile and an increase in the membrane-destabilizing activity. Results show that the observed hemolytic activities and pH sensitivity profiles could be designed across a range that matches the properties needed for drug carriers to enhance the cytoplasmic delivery of therapeutic cargos.


Asunto(s)
Acrilatos/síntesis química , Disulfuros/síntesis química , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Glutatión/metabolismo , Polímeros/síntesis química , Acrilatos/farmacología , Membrana Celular/efectos de los fármacos , Disulfuros/farmacología , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Polímeros/farmacología
7.
Biomaterials ; 32(17): 4118-29, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21429574

RESUMEN

There is an urgent need for novel polymeric carriers that can selectively deliver a large dose of chemotherapeutic agents into hepatic cancer cells to achieve high therapeutic activity with minimal systemic side effects. PAMAM dendrimers are characterized by a unique branching architecture and a large number of chemical surface groups suitable for coupling of chemotherapeutic agents. In this article, we report the coupling of N-acetylgalactosamine (NAcGal) to generation 5 (G5) of poly(amidoamine) (PAMAM-NH2) dendrimers via peptide and thiourea linkages to prepare NAcGal-targeted carriers used for targeted delivery of chemotherapeutic agents into hepatic cancer cells. We describe the uptake of NAcGal-targeted and non-targeted G5 dendrimers into hepatic cancer cells (HepG2) as a function of G5 concentration and incubation time. We examine the contribution of the asialoglycoprotein receptor (ASGPR) to the internalization of NAcGal-targeted dendrimers into hepatic cancer cells through a competitive inhibition assay. Our results show that uptake of NAcGal-targeted G5 dendrimers into hepatic cancer cells occurs via ASGPR-mediated endocytosis. Internalization of these targeted carriers increased with the increase in G5 concentration and incubation time following Michaelis-Menten kinetics characteristic of receptor-mediated endocytosis. These results collectively indicate that G5-NAcGal conjugates function as targeted carriers for selective delivery of chemotherapeutic agents into hepatic cancer cells.


Asunto(s)
Acetilgalactosamina/farmacocinética , Antineoplásicos/farmacología , Dendrímeros/síntesis química , Dendrímeros/farmacocinética , Portadores de Fármacos/síntesis química , Poliaminas/farmacología , Transporte Biológico , Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Células Hep G2 , Humanos , Poliaminas/química , Polímeros
8.
Nanoscale ; 2(5): 755-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20648321

RESUMEN

Poly(amidoamine) (PAMAM) dendrimers are a family of water-soluble polymers with a characteristic tree-like branching architecture and a large number of surface groups, which have been used to immobilize a variety of therapeutic molecules for targeted drug delivery. Earlier studies showed that small cationic PAMAM-NH2 and selected anionic PAMAM-COOH dendrimers permeate across in vitro models of the small intestinal epithelium by paracellular and transcellular transport mechanisms. The focus of this research is to mathematically calculate the effect of cationic, anionic, and neutral PAMAM dendrimers on the porosity of epithelial tight junctions as a function of dendrimers concentration, incubation time, generation number, and charge density. Results show that the increase in the concentration, incubation time and generation number of cationic G0-G2 PAMAM-NH2 and anionic G2.5 and G3.5 PAMAM-COOH dendrimers caused a corresponding increase in the porosity of Caco-2 cell monolayers. Neutral G2-G4 PAMAM-OH dendrimers had no effect on the porosity of intestinal cells. These results provide quantitative evidence that the observed increase in permeability of PAMAM dendrimers across Caco-2 cell monolayers is due to their effect on the organization of the tight junctions and the associated increase in membrane porosity. Furthermore, these results emphasize the potential of cationic PAMAM-NH2 and anionic PAMAM-COOH dendrimers to function as carriers for controlled oral drug delivery.


Asunto(s)
Dendrímeros/química , Células CACO-2 , Permeabilidad de la Membrana Celular , Portadores de Fármacos/química , Humanos , Manitol/administración & dosificación , Porosidad
9.
Biomaterials ; 31(27): 7150-66, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20579726

RESUMEN

This report describes the design and synthesis of a new series of degradable, pH-sensitive, membrane-destabilizing, comb-like polymers that can enhance the intracellular delivery of therapeutic nucleic acids. These comb-like polymers are based on a diblock polymer backbone where the first block is a copolymer of pH-sensitive ethyl acrylic acid (EAA) monomers and hydrophobic butyl methacrylate (BMA) or hexyl methacrylate monomers. The second block is a homopolymer of N-acryloxy succinimide (NASI) or ss-benzyl l-aspartate N-carboxy-anhydride (BLA-NCA) monomers, which are functionalized to allow controlled grafting of hydrophobic HMA and cationic trimethyl aminoethyl methacrylate (TMAEMA) copolymers via acid-labile hydrazone linkages. These comb-like polymers displayed high hemolytic activity in acidic solutions, which increased with the increase in polymer concentration. All comb-like polymers degraded into small fragments upon incubation in an acidic solution (pH 5.8) due to hydrolysis of the hydrazone linkages connecting the hydrophobic/cationic grafts to the polymer backbone. Comb-like polymers successfully complexed anti-GAPDH siRNA molecules into serum- and nuclease-stable particles, which successfully silenced GAPDH expression at both the mRNA and protein levels. These results collectively indicate the potential of these new comb-like polymers to serve as vehicles for effective intracellular delivery of therapeutic nucleic acids.


Asunto(s)
Vectores Genéticos/metabolismo , Ácidos Nucleicos/administración & dosificación , Polímeros/metabolismo , Transfección/métodos , Línea Celular Tumoral , Estabilidad de Medicamentos , Vectores Genéticos/síntesis química , Vectores Genéticos/química , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Polímeros/síntesis química , Polímeros/química
10.
Ultrasound Med Biol ; 36(7): 1176-87, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20620704

RESUMEN

Localized delivery of therapeutic agents through the blood-brain barrier (BBB) is a clinically significant task that remains challenging. Ultrasound (US) application after intravenous administration of microbubbles has been shown to generate localized BBB opening in animal models but the detailed mechanisms are not yet fully described. The current study investigates the effects of US-stimulated microbubbles on in vitro murine brain microvascular endothelial (bEnd.3) cells by monitoring sonoporation and changes in intracellular calcium concentration ([Ca(2+)](i)) using real-time fluorescence and high-speed brightfield microscopy. Cells seeded in microchannels were exposed to a single US pulse (1.25 MHz, 10 cycles, 0.24 MPa peak negative pressure) in the presence of Definity microbubbles and extracellular calcium concentration [Ca(2+)](o) = 0.9 mM. Disruption of the cell membrane was assessed using propidium iodide (PI) and change in the [Ca(2+)](i) was measured using fura-2. Cells adjacent to a microbubble exhibited immediate [Ca(2+)](i) changes after US pulse with and without PI uptake and the [Ca(2+)](i) changes were twice as large in cells with PI uptake. Cell viability assays showed that sonoporated cells could survive with modulation of [Ca(2+)](i) and uptake of PI. Cells located near sonoporated cells were observed to exhibit changes in [Ca(2+)](i) that were delayed from the time of US application and without PI uptake. These results demonstrate that US-stimulated microbubbles not only directly cause changes in [Ca(2+)](i) in brain endothelial cells in addition to sonoporation but also generate [Ca(2+)](i) transients in cells not directly interacting with microbubbles, thereby affecting cells in larger regions beyond the cells in contact with microbubbles.


Asunto(s)
Calcio/metabolismo , Circulación Cerebrovascular/fisiología , Células Endoteliales/fisiología , Microcirculación/fisiología , Transducción de Señal/fisiología , Sonicación , Animales , Línea Celular , Circulación Cerebrovascular/efectos de la radiación , Células Endoteliales/efectos de la radiación , Ratones , Microcirculación/efectos de la radiación , Dosis de Radiación , Transducción de Señal/efectos de los fármacos
11.
J Biomater Sci Polym Ed ; 19(10): 1333-46, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18854126

RESUMEN

An excessive inflammatory response is a clinical problem following major infections and severe injury that may lead to Sepsis Syndrome and Multiple Organ Failure (MOF), including the Acute Respiratory Distress Syndrome (ARDS). Management of excessive inflammation may be possible through control of key inflammatory pathways such as those mediated by the important interleukin-1 receptor associated kinase-1 (IRAK-1). In the current study, we report the impact on gene expression induced by lipopolysaccharide (LPS) stimulation of THP-1 cells treated with an antisense oligonucleotide (ASODN) against the IRAK-1 gene using cDNA microarrays and quantitative RT-PCR. The therapeutic ASODN was delivered using a pH-sensitive, membrane-interactive polymer that destabilizes the endosomal membrane to enhance access cytoplasmic delivery in targeted cells. Following LPS stimulation, the anti-inflammatory activity of ASODN against the IRAK-1 gene expression is evidenced by the lower expression of inflammatory chemokines, cytokines and acute-phase proteins compared to control cells. These results provide a larger mechanistic picture of IRAK-1 knockdown by this polymer therapeutic in macrophage-like cells.


Asunto(s)
Técnicas de Silenciamiento del Gen , Quinasas Asociadas a Receptores de Interleucina-1/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Polímeros/metabolismo , Animales , Secuencia de Bases , Bovinos , Línea Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , ADN Complementario/genética , Ensayo de Cambio de Movilidad Electroforética , Humanos , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Macrófagos/citología , Metalotioneína/genética , Metalotioneína/metabolismo , FN-kappa B/metabolismo , Oligodesoxirribonucleótidos Antisentido/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polímeros/síntesis química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
12.
Biomacromolecules ; 7(8): 2407-14, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16903689

RESUMEN

Many macromolecular therapeutics such as peptides, proteins, antisense oligodeoxynucleotides (ASODN), and short interfering RNA (siRNA) are active only in the cytoplasm or nucleus of targeted cells. Endocytosis is the primary route for cellular uptake of these molecules, which results in their accumulation in the endosomal-lysosomal trafficking pathway and loss of therapeutic activity. In this article, we describe the synthesis and pH-dependent membrane-destabilizing activity of a new "smart" polymer family that can be utilized to enhance the intracellular delivery of therapeutic macromolecules through the endosomal membrane barrier into the cytoplasm of targeted cells. These polymers are propylamine, butylamine, and pentylamine derivatives of poly(styrene-alt-maleic anhydride) (PSMA) copolymers. The PSMA-alkylamide derivatives are hydrophilic and membrane-inactive at physiological pH; however, they become hydrophobic and membrane-disruptive in response to endosomal pH values as measured by their hemolytic activity. Results show that the pH-dependent membrane-destabilizing activity of PSMA derivatives can be controlled by varying the length of the alkylamine group, the degree of modification of the copolymer, and the molecular weight of the PSMA copolymer backbone. Butylamine and pentylamine derivatives of PSMA copolymers exhibited more than 80% hemolysis at endosomal pH values, which suggests their potential as a platform of "smart" polymeric carriers for enhanced cytoplasmic delivery of a variety of therapeutic macromolecules.


Asunto(s)
Sistemas de Liberación de Medicamentos , Anhídridos Maleicos/síntesis química , Polímeros/síntesis química , Poliestirenos/síntesis química , Animales , Endosomas/química , Eritrocitos/química , Eritrocitos/citología , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Anhídridos Maleicos/química , Anhídridos Maleicos/farmacocinética , Ratones , Células 3T3 NIH , Polímeros/química , Polímeros/farmacocinética , Poliestirenos/química , Poliestirenos/farmacología
13.
Expert Opin Biol Ther ; 5(1): 23-32, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15709907

RESUMEN

Limited cytoplasmic delivery of enzyme-susceptible drugs remains a significant challenge facing the development of protein and nucleic acid therapies that act in intracellular compartments. Researchers have examined several approaches, including fusogenic proteins and protein transduction domains, to enhance the intracellular delivery of the therapeutic cargo. This review summarises efforts to develop 'smart' pH-sensitive and membrane-destabilising polymers that can shuttle therapeutic peptide, protein and nucleic acid molecules past the endosomal membrane into the cytoplasm of targeted cells. Several classes of 'smart' non-degradable polymeric carriers have been developed that have proved effective both in vitro and in vivo in enhancing the cytoplasmic delivery of a variety of therapeutic molecules.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Líquido Intracelular/efectos de los fármacos , Sustancias Macromoleculares/administración & dosificación , Polímeros/administración & dosificación , Animales , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Humanos , Líquido Intracelular/metabolismo , Sustancias Macromoleculares/farmacocinética , Polímeros/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA