Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chromosome Res ; 21(5): 447-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23896647

RESUMEN

Five families are traditionally recognized within higher ruminants (Pecora): Bovidae, Moschidae, Cervidae, Giraffidae and Antilocapridae. The phylogenetic relationships of Antilocapridae and Giraffidae within Pecora are, however, uncertain. While numerous fusions (mostly Robertsonian) have accumulated in the giraffe's karyotype (Giraffa camelopardalis, Giraffidae, 2n = 30), that of the pronghorn (Antilocapra americana, Antilocapridae, 2n = 58) is very similar to the hypothesised pecoran ancestral state (2n = 58). We examined the chromosomal rearrangements of two species, the giraffe and pronghorn, using a combination of fluorescence in situ hybridization painting probes and BAC clones derived from cattle (Bos taurus, Bovidae). Our data place Moschus (Moschidae) closer to Bovidae than Cervidae. Although the alternative (i.e., Moschidae + Cervidae as sister groups) could not be discounted in recent sequence-based analyses, cytogenetics bolsters conclusions that the former is more likely. Additionally, DNA sequences were isolated from the centromeric regions of both species and compared. Analysis of cenDNA show that unlike the pronghorn, the centromeres of the giraffe are probably organized in a more complex fashion comprising different repetitive sequences specific to single chromosomal pairs or groups of chromosomes. The distribution of nucleolar organiser region (NOR) sites, often an effective phylogenetic marker, were also examined in the two species. In the giraffe, the position of NORs seems to be autapomorphic since similar localizations have not been found in other species within Pecora.


Asunto(s)
Rumiantes/genética , Animales , Bovinos , Centrómero/genética , Bandeo Cromosómico , Pintura Cromosómica , Cromosomas de los Mamíferos , Hibridación Fluorescente in Situ , Cariotipo , Región Organizadora del Nucléolo , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Rumiantes/clasificación , Translocación Genética , Cromosoma X
2.
Mech Ageing Dev ; 126(6-7): 685-91, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15888323

RESUMEN

Telomere shortening is used for replicative aging in primates and ungulates but not rodents. We examined telomere biology in rabbits to expand the comparative biology of telomere-directed replicative senescence within mammals. The order Lagomorpha consists of two families; Leporidae and Ochotonidae. We examined telomere biology in species representing three leporid genera (European White Rabbit, Black-tailed Jack Rabbit, and Swamp Rabbit) and the monotypic ochotonid genus (North American Pika). Of the leporids one species was a laboratory strain and the others were wild caught. The leporids neither exhibited cellular senescence after sustained periods in culture nor displayed detectable telomerase activity. Continued culture was possible because of their extremely long telomeric arrays. Immunofluorescence showed robust telomere signals at chromosome ends and significant internal chromosomal staining in some instances. Pika was unique in displaying endogenous telomerase activity throughout time in culture. These results show that it is unlikely that lagomorphs use telomere shortening and replicative senescence as a tumor protective mechanism.


Asunto(s)
Senescencia Celular/fisiología , Telomerasa/metabolismo , Telómero/metabolismo , Animales , Células Cultivadas , Liebres/fisiología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA