Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 52(12): 7292-7304, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38806233

RESUMEN

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.


Asunto(s)
Microscopía por Crioelectrón , ADN Viral , ADN Polimerasa Dirigida por ADN , Herpesvirus Humano 1 , Proteínas Virales , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/ultraestructura , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , ADN Viral/metabolismo , ADN Viral/biosíntesis , Replicación del ADN , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Replicación Viral , Unión Proteica , Exodesoxirribonucleasas
2.
J Biol Chem ; 292(37): 15489-15500, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28743741

RESUMEN

DNA replication greatly enhances expression of the herpes simplex virus 1 (HSV-1) γ2 late genes by still unknown mechanisms. Here, we demonstrate that 5,6-dichloro-1-ß-d-ribofuranosylbenzimidazole (DRB), an inhibitor of CDK9, suppresses expression of γ2 late genes with an IC50 of 5 µm, which is at least 10 times lower than the IC50 value required for inhibition of expression of early genes. The effect of DRB could not be explained by inhibition of DNA replication per se or loading of RNA polymerase II to late promoters and subsequent reduction of transcription. Instead, DRB reduces accumulation of γ2 late mRNA in the cytoplasm. In addition, we show that siRNA-mediated knockdown of the transcription factor SPT5, but not NELF-E, also gives rise to a specific inhibition of HSV-1 late gene expression. Finally, addition of DRB reduces co-immunoprecipitation of ICP27 using an anti-SPT5 antibody. Our results suggest that efficient expression of replication-dependent γ2 late genes is, at least in part, regulated by CDK9 dependent co- and/or post-transcriptional events involving SPT5 and ICP27.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Replicación del ADN , Regulación Viral de la Expresión Génica , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Factores de Elongación Transcripcional/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Antivirales/farmacología , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Biología Computacional , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , Replicación del ADN/efectos de los fármacos , Diclororribofuranosil Benzoimidazol/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/crecimiento & desarrollo , Humanos , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/genética , Inmunoprecipitación , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/antagonistas & inhibidores , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
3.
J Biol Chem ; 289(47): 32583-92, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25278021

RESUMEN

Herpes simplex virus 1 (HSV-1) UL5/8/52 helicase-primase complex is required for DNA unwinding at the replication fork and synthesis of primers during virus replication, and it has become a promising novel target for antiviral therapy. Using molecular cloning, we have identified three separate domains of UL52. Co-immunoprecipitation experiments in extracts from cells transiently expressing HA-tagged UL5, FLAG-UL8, and enhanced GFP-tagged UL52 domains revealed that the N-terminal domain of UL52 primase binds UL5 helicase and the middle domain interacts with the UL8 accessory protein. In addition, an interaction between the single strand DNA-binding protein ICP8 and the UL52 middle domain was observed. The complex between UL5 and UL52 was stabilized by the antiviral compound BAY 54-6322, and mutations providing resistance to the drug obliterate this effect. Our results also suggest a mechanism for accommodating conformational strain resulting from movement of UL5 and UL52 in opposite directions on the lagging strand template, and they identify molecular complexes that can be further examined by structural biology techniques to resolve the mechanism of primer synthesis during herpesvirus replication. Finally, they help to explain the mechanism of action of a novel class of antiviral compounds currently being evaluated in clinical trials.


Asunto(s)
Antivirales/farmacología , ADN Helicasas/metabolismo , ADN Primasa/metabolismo , Farmacorresistencia Viral/efectos de los fármacos , Mutación , Proteínas Virales/metabolismo , Animales , Sitios de Unión/genética , Western Blotting , Línea Celular , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , ADN Primasa/antagonistas & inhibidores , ADN Primasa/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Viral/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Inmunoprecipitación , Microscopía Confocal , Oxadiazoles/farmacología , Unión Proteica , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
4.
FASEB J ; 27(12): 4965-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23975937

RESUMEN

The three FET (FUS, EWSR1, and TAF15) family RNA binding proteins are expressed in all tissues and almost all cell types. The disordered N-terminal parts are always present in FET fusion oncoproteins of sarcomas and leukemia. Mutations in FUS and TAF15 cause aggregation of FET proteins in neurological disorders. Here we used recombinant proteins in pulldown experiments and mass spectrometry to identify major interaction partners of the FET N-terminal parts. We report that FUS, EWSR1, and TAF15 form homo- and heterocomplexes as major binding partners and identify an evolutionarily conserved N-terminal motif (FETBM1) that is required for this interaction. The binding is RNA and DNA independent and robust up to 1 M of NaCl. The localization of FETBM1 and its target sequences supports a simple model for FET protein aggregation as reported in neurological disorders such as amyotrophic lateral sclerosis, frontotemporal dementia, and essential tremor. The FETBM1 localization also explains the binding of normal full-length FET proteins to their oncogenic fusion proteins.


Asunto(s)
Proteínas de Unión a Calmodulina/química , Proteínas de Fusión Oncogénica/química , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Unión a Calmodulina/metabolismo , Línea Celular Tumoral , Humanos , Datos de Secuencia Molecular , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteína EWS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo
5.
J Biol Chem ; 287(40): 33142-52, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22851167

RESUMEN

We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.


Asunto(s)
ADN Helicasas/metabolismo , ADN Primasa/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virales/metabolismo , Alanina/química , Secuencia de Aminoácidos , Animales , Cricetinae , ADN/biosíntesis , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Oligonucleótidos/genética , Plásmidos/metabolismo , Homología de Secuencia de Aminoácido , Replicación Viral
6.
J Biol Chem ; 286(18): 15619-24, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21362621

RESUMEN

Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.


Asunto(s)
Replicación del ADN/fisiología , ADN Viral/biosíntesis , Recombinación Genética/fisiología , Simplexvirus/fisiología , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Núcleo Celular/metabolismo , Núcleo Celular/virología , Humanos
7.
J Biol Chem ; 285(18): 13761-8, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20215648

RESUMEN

The effects of UV irradiation on herpes simplex virus type 1 (HSV-1) gene expression and DNA replication were examined in cell lines containing mutations inactivating the XPA gene product required for nucleotide-excision repair, the DNA polymerase eta responsible for translesion synthesis, or the Cockayne syndrome A and B (CSA and CSB) gene products required for transcription-coupled nucleotide excision repair. In the absence of XPA and CSA and CSB gene products, virus replication was reduced 10(6)-, 400-, and 100-fold, respectively. In DNA polymerase eta mutant cells HSV-1 plaque efficiency was reduced 10(4)-fold. Furthermore, DNA polymerase eta was strictly required for virus replication at low multiplicities of infection but dispensable at high multiplicities of infection. Knock down of Rad 51, Rad 52, and Rad 54 levels by RNA interference reduced replication of UV-irradiated HSV-1 150-, 100-, and 50-fold, respectively. We find that transcription-coupled repair efficiently supports expression of immediate early and early genes from UV-irradiated HSV-1 DNA. In contrast, the progression of the replication fork appears to be impaired, causing a severe reduction of late gene expression. Since the HSV-1 replisome does not make use of proliferating cell nuclear antigen, we attribute the replication defect to an inability to perform proliferating cell nuclear antigen-dependent translesion synthesis by polymerase switching at the fork. Instead, DNA polymerase eta may act during postreplication gap filling. Homologous recombination, finally, might restore the physical and genetic integrity of the virus chromosome.


Asunto(s)
Replicación del ADN/efectos de la radiación , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación Viral de la Expresión Génica/efectos de la radiación , Herpesvirus Humano 1/fisiología , Recombinación Genética/efectos de la radiación , Rayos Ultravioleta , Replicación Viral/efectos de la radiación , Línea Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Regulación Viral de la Expresión Génica/fisiología , Herpes Simple/genética , Herpes Simple/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Replicación Viral/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
8.
Glycobiology ; 19(8): 847-59, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19369700

RESUMEN

We have previously shown that varicella-zoster virus (VZV) and cytomegalovirus (CMV) infection of diploid human fibroblasts (HEL) results in neo-expression of Lewis antigens sialyl Lewis x (sLe(x)) and Lewis y (Le(y)), respectively, after transcriptional activation of different combinations of dormant human fucosyltransferase genes (FUT1, FUT3, FUT5, and FUT6), whose gene products are responsible for the synthesis of Le antigens. Here, we show that herpes simplex virus type 1 (HSV-1) also induces sLe(x) expression dependent on induction of FUT3, FUT5, and FUT6 transcription in infected cells. HSV-1 induction of FUT5 was subsequently used as a model system for analyzing the mechanism of viral activation of dormant fucosyltransferase genes. We show that this is a rapid process, which gives rise to elevated FUT5 RNA levels already at 90 min postinfection. Augmented FUT5 transcription was found to be dependent on transcription of viral genes, but not dependent on the immediate early proteins ICP0 and ICP4, as demonstrated by experiments with HSV-1 mutants defective in expression of these genes. Augmented FUT5 transcription takes place in cycloheximide-treated HSV-1-infected cells, suggesting a more direct role for IE viral RNA during activation of cellular FUT5.


Asunto(s)
Fucosiltransferasas/metabolismo , Genes Inmediatos-Precoces , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Antígenos del Grupo Sanguíneo de Lewis/biosíntesis , Oligosacáridos/biosíntesis , ARN Viral/metabolismo , Línea Celular , Activación Enzimática , Fibroblastos/metabolismo , Fibroblastos/virología , Fucosiltransferasas/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 1/genética , Humanos , Mutación , ARN Viral/genética , Antígeno Sialil Lewis X , Activación Transcripcional
9.
PLoS One ; 9(11): e111584, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25365323

RESUMEN

Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type) and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.


Asunto(s)
Replicación del ADN , ADN Viral , Herpesvirus Humano 1/genética , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Animales , Línea Celular , Genoma Viral , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética
11.
J Biol Chem ; 284(24): 16246-16255, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19351883

RESUMEN

The herpes simplex virus replicon consists of cis-acting sequences, oriS and oriL, and the origin binding protein (OBP) encoded by the UL9 gene. Here we identify essential structural features in the initiator protein OBP and the replicator sequence oriS, and we relate the appearance of these motifs to the evolutionary history of the alphaherpesvirus replicon. Our results reveal two conserved sequence elements in herpes simplex virus type 1, OBP; the RVKNL motif, common to and specific for all alphaherpesviruses, is required for DNA binding, and the WP XXXGAXXFXX L motif, found in a subset of alphaherpesviruses, is required for specific binding to the single strand DNA-binding protein ICP8. A 121-amino acid minimal DNA binding domain containing conserved residues is not soluble and does not bind DNA. Additional sequences present 220 amino acids upstream from the RVKNL motif are needed for solubility and function. We also examine the binding sites for OBP in origins of DNA replication and how they are arranged. NMR and DNA melting experiments demonstrate that origin sequences derived from many, but not all, alphaherpesviruses can adopt stable boxI/boxIII hairpin conformations. Our results reveal a stepwise evolutionary history of the herpes simplex virus replicon and suggest that replicon divergence contributed to the formation of major branches of the herpesvirus family.


Asunto(s)
Proteínas de Unión al ADN/genética , Evolución Molecular , Herpesvirus Humano 1/genética , Origen de Réplica/genética , Proteínas Virales/genética , Replicación Viral/genética , Alphaherpesvirinae/genética , Alphaherpesvirinae/crecimiento & desarrollo , Secuencia Conservada , ADN Viral/química , ADN Viral/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Viral , Herpesvirus Humano 1/crecimiento & desarrollo , Conformación de Ácido Nucleico , Proteínas Virales/metabolismo
12.
J Biol Chem ; 282(15): 10865-72, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17296606

RESUMEN

Herpes simplex virus has a linear double-stranded DNA genome with directly repeated terminal sequences needed for cleavage and packaging of replicated DNA. In infected cells, linear genomes rapidly become endless. It is currently a matter of discussion whether the endless genomes are circles supporting rolling circle replication or arise by recombination of linear genomes forming concatemers. Here, we have examined the role of mammalian DNA ligases in the herpes simplex virus, type I (HSV-1) life cycle by employing RNA interference (RNAi) in human 1BR.3.N fibroblasts. We find that RNAi-mediated knockdown of DNA ligase IV and its co-factor XRCC4 causes a hundred-fold reduction of virus yield, a small plaque phenotype, and reduced DNA synthesis. The effect is specific because RNAi against DNA ligase I or DNA ligase III fail to reduce HSV-1 replication. Furthermore, RNAi against DNA ligase IV and XRCC4 does not affect replication of adenovirus. In addition, high multiplicity infections of HSV-1 in human DNA ligase IV-deficient cells reveal a pronounced delay of production of infectious virus. Finally, we demonstrate that formation of endless genomes is inhibited by RNAi-mediated depletion of DNA ligase IV and XRCC4. Our results suggests that DNA ligase IV/XRCC4 serves an important role in the replication cycle of herpes viruses and is likely to be required for the formation of the endless genomes early during productive infection.


Asunto(s)
ADN Ligasas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 1/metabolismo , ARN Interferente Pequeño/genética , Línea Celular , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Viral/biosíntesis , ADN Viral/genética , Proteínas de Unión al ADN/genética , Genoma Viral/genética , Herpesvirus Humano 1/genética , Humanos , Replicación Viral
13.
J Biol Chem ; 279(28): 29211-7, 2004 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-15133043

RESUMEN

The herpes simplex virus, type I origin-binding protein, OBP, is a superfamily II DNA helicase encoded by the UL9 gene. OBP binds in a sequence-specific and cooperative way to the viral origin of replication oriS. OBP may unwind partially and introduce a hairpin into the double-stranded origin of replication. The formation of the novel conformation referred to as oriS* also requires the single-stranded DNA-binding protein, ICP8, and ATP hydrolysis. OBP forms a stable complex with oriS*. The hairpin in oriS* provides a site for sequence-specific attachment, and a single-stranded region triggers ATP hydrolysis. Here we use Escherichia coli exonuclease I to map the binding of the C-terminal domain of OBP to the hairpin and the helicase domains to the single-stranded tail. The helicase domains cover a stretch of 23 nucleotides of single-stranded DNA. Using streptavidin-coated magnetic beads, we show that OBP may bind two copies of double-stranded DNA (one biotin-labeled and the other one radioactively labeled) but only one copy of oriS*. It is the length of the single-stranded tail that determines the stoichiometry of OBP.DNA complexes. OBP interacts with the bases of the single-stranded tail, and ATP hydrolysis is triggered by position-specific interactions between OBP and bases in the single-stranded tail of oriS*.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Herpesvirus Humano 1/genética , Origen de Réplica , Proteínas Virales/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , ADN/química , ADN Helicasas/genética , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Sustancias Macromoleculares , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Proteínas Virales/química , Proteínas Virales/genética
14.
J Biol Chem ; 277(43): 41204-12, 2002 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-12183471

RESUMEN

The Herpes simplex virus type I origin-binding protein, OBP, is encoded by the UL9 gene. OBP binds the origin of DNA replication, oriS, in a cooperative and sequence-specific manner. OBP is also an ATP-dependent DNA helicase. We have recently shown that single-stranded oriS folds into a unique and evolutionarily conserved conformation, oriS*, which is stably bound by OBP. OriS* contains a stable hairpin formed by complementary base pairing between box I and box III in oriS. Here we show that OBP, in the presence of the single-stranded DNA-binding protein ICP8, can convert an 80-base pair double-stranded minimal oriS fragment to oriS* and form an OBP-oriS* complex. The formation of an OBP-oriS* complex requires hydrolysable ATP. We also demonstrate that OBP in the presence of ICP8 and ATP promotes slow but specific and complete unwinding of duplex minimal oriS. The possibility that the OBP-oriS* complex may serve as an assembly site for the herpes virus replisome is discussed.


Asunto(s)
Adenosina Trifosfato/metabolismo , Conformación de Ácido Nucleico , Origen de Réplica , Proteínas Virales/metabolismo , Secuencia de Bases , Huella de ADN , Proteínas de Unión al ADN , Oligodesoxirribonucleótidos
15.
J Virol ; 77(21): 11480-90, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14557633

RESUMEN

In cultured cells, adeno-associated virus (AAV) replication requires coinfection with a helper virus, either adenovirus or herpesvirus. In the absence of helper virus coinfection AAV can integrate its genome site specifically into the AAVS1 region of chromosome 19. Upon subsequent infection with a helper virus, the AAV genome is released from chromosome 19 by a process termed rescue, and productive replication ensues. The AAV genome cloned into a plasmid vector can also serve to initiate productive AAV replication. When such constructs are transfected into cells and those cells are simultaneously or subsequently infected with a helper virus, the AAV genome is released from the plasmid. This process is thought to serve as a model for rescue from the human genomic site. In this report we present a model for rescue of AAV genomes by replication. A hallmark of this model is the production of a partially single-stranded and partially double-stranded molecule. We show that the AAV2 Rep 68 protein, together with the UL30/UL42 herpes simplex virus type 1 DNA polymerase and the UL29 single-strand DNA binding protein ICP8, is sufficient to efficiently and precisely rescue AAV from a plasmid in a way that is dependent on the AAV inverted terminal repeat sequence.


Asunto(s)
Replicación del ADN , Dependovirus/genética , Vectores Genéticos , Genoma Viral , Plásmidos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Dependovirus/fisiología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , ARN Viral , Transfección , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA