RESUMEN
Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.
Asunto(s)
Microbiota , Edulcorantes no Nutritivos , Adulto , Animales , Aspartame/farmacología , Glucemia , Humanos , Ratones , Edulcorantes no Nutritivos/análisis , Edulcorantes no Nutritivos/farmacología , Sacarina/farmacologíaRESUMEN
Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.
Asunto(s)
Membrana Mucosa , Salmonella typhimurium , Humanos , Ratones , Animales , Linfocitos T , Inmunidad MucosaRESUMEN
Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1ß and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Inflamasomas , Ratones , Humanos , Animales , Inflamasomas/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Apoptosis , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-1beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismoRESUMEN
The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.
Asunto(s)
Microbioma Gastrointestinal/genética , Regulación de la Expresión Génica/genética , Síndrome del Colon Irritable/metabolismo , Metaboloma , Purinas/metabolismo , Transcriptoma/genética , Animales , Ácidos y Sales Biliares/metabolismo , Biopsia , Butiratos/metabolismo , Cromatografía Liquida , Estudios Transversales , Epigenómica , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Regulación de la Expresión Génica/fisiología , Interacciones Microbiota-Huesped/genética , Humanos , Hipoxantina/metabolismo , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/microbiología , Estudios Longitudinales , Masculino , Metaboloma/fisiología , Ratones , Estudios Observacionales como Asunto , Estudios Prospectivos , Programas Informáticos , Espectrometría de Masas en Tándem , Transcriptoma/fisiologíaRESUMEN
Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.
Asunto(s)
Enfermedad de Crohn/microbiología , Células Epiteliales/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidad Clase II/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Transcriptoma/genética , Animales , Antibacterianos/farmacología , Relojes Circadianos/fisiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Dieta , Células Epiteliales/citología , Células Epiteliales/inmunología , Citometría de Flujo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Homeostasis , Hibridación Fluorescente in Situ , Interleucina-10/metabolismo , Interleucina-10/farmacología , Intestino Delgado/fisiología , Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodicidad , Linfocitos T/inmunología , Transcriptoma/fisiologíaRESUMEN
Immune cells residing in white adipose tissue have been highlighted as important factors contributing to the pathogenesis of metabolic diseases, but the molecular regulators that drive adipose tissue immune cell remodeling during obesity remain largely unknown. Using index and transcriptional single-cell sorting, we comprehensively map all adipose tissue immune populations in both mice and humans during obesity. We describe a novel and conserved Trem2+ lipid-associated macrophage (LAM) subset and identify markers, spatial localization, origin, and functional pathways associated with these cells. Genetic ablation of Trem2 in mice globally inhibits the downstream molecular LAM program, leading to adipocyte hypertrophy as well as systemic hypercholesterolemia, body fat accumulation, and glucose intolerance. These findings identify Trem2 signaling as a major pathway by which macrophages respond to loss of tissue-level lipid homeostasis, highlighting Trem2 as a key sensor of metabolic pathologies across multiple tissues and a potential therapeutic target in metabolic diseases.
Asunto(s)
Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa , Intolerancia a la Glucosa , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Metabolismo de los Lípidos/genética , Lípidos/análisis , Macrófagos/citología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/metabolismo , Obesidad/metabolismo , Obesidad/patología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Transducción de Señal , Análisis de la Célula IndividualRESUMEN
The immune system has a vital, albeit complex, relationship with the microbes residing within us, one that we are only beginning to understand. We asked investigators what they felt were the fundamental challenges we currently face in unraveling the impacts of microbes and their metabolites on host immunity and to discuss key opportunities toward achieving future insights and innovation.
Asunto(s)
Inmunidad , Animales , Humanos , Bacterias/inmunología , Bacterias/metabolismo , Interacciones Huésped-Patógeno/inmunología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Microbiota/inmunologíaRESUMEN
Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage. In colonized, but not germ-free mice, probiotics encountered a marked mucosal colonization resistance. In contrast, humans featured person-, region- and strain-specific mucosal colonization patterns, hallmarked by predictive baseline host and microbiome features, but indistinguishable by probiotics presence in stool. Consequently, probiotics induced a transient, individualized impact on mucosal community structure and gut transcriptome. Collectively, empiric probiotics supplementation may be limited in universally and persistently impacting the gut mucosa, meriting development of new personalized probiotic approaches.
Asunto(s)
Microbioma Gastrointestinal , Probióticos/administración & dosificación , Adolescente , Adulto , Anciano , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Femenino , Mucosa Gástrica/microbiología , Humanos , Mucosa Intestinal/microbiología , Masculino , Metagenómica , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Efecto Placebo , Análisis de Componente Principal , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Transcriptoma , Adulto JovenRESUMEN
Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.
Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/administración & dosificación , Adolescente , Adulto , Anciano , Animales , Trasplante de Microbiota Fecal , Heces/microbiología , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Lactococcus/genética , Lactococcus/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Adulto JovenRESUMEN
The "holobiont" concept, defined as the collective contribution of the eukaryotic and prokaryotic counterparts to the multicellular organism, introduces a complex definition of individuality enabling a new comprehensive view of human evolution and personalized characteristics. Here, we provide snapshots of the evolving microbial-host associations and relations during distinct milestones across the lifespan of a human being. We discuss the current knowledge of biological symbiosis between the microbiome and its host and portray the challenges in understanding these interactions and their potential effects on human physiology, including microbiome-nervous system inter-relationship and its relevance to human variation and individuality.
Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal , Envejecimiento , Animales , Bacterias/clasificación , Bacterias/metabolismo , Evolución Biológica , Humanos , Recién Nacido , Especificidad de Órganos , Pubertad , SimbiosisAsunto(s)
Hierro , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Hierro/metabolismo , AnimalesRESUMEN
Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.
Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata/genética , Intestinos/inmunología , Intestinos/microbiología , Linfocitos/inmunología , Linfocitos/microbiología , Animales , Secuencia de Bases , Cromatina/metabolismo , Citocinas/inmunología , Epigénesis Genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Transcripción GenéticaRESUMEN
The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.
Asunto(s)
Ritmo Circadiano , Colon/microbiología , Microbioma Gastrointestinal , Transcriptoma , Animales , Cromatina/metabolismo , Colon/metabolismo , Vida Libre de Gérmenes , Hígado/metabolismo , Ratones , Microscopía Electrónica de RastreoRESUMEN
The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of barrier integrity in a model of colitis. Deletion of Il18 or its receptor Il18r1 in intestinal epithelial cells (Δ/EC) conferred protection from colitis and mucosal damage in mice. In contrast, deletion of the IL-18 negative regulator Il18bp resulted in severe colitis associated with loss of mature goblet cells. Colitis and goblet cell loss were rescued in Il18bp(-/-);Il18r(Δ/EC) mice, demonstrating that colitis severity is controlled at the level of IL-18 signaling in intestinal epithelial cells. IL-18 inhibited goblet cell maturation by regulating the transcriptional program instructing goblet cell development. These results inform on the mechanism of goblet cell dysfunction that underlies the pathology of ulcerative colitis.
Asunto(s)
Colitis Ulcerosa/patología , Colitis Ulcerosa/fisiopatología , Interleucina-18/inmunología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Sulfato de Dextran , Células Endoteliales/metabolismo , Células Epiteliales/citología , Femenino , Células Caliciformes/metabolismo , Células Caliciformes/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Subunidad alfa del Receptor de Interleucina-18/genética , Subunidad alfa del Receptor de Interleucina-18/metabolismo , Mucosa Intestinal/fisiopatología , Masculino , Ratones , Transducción de SeñalRESUMEN
Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.
Asunto(s)
Algoritmos , Glucemia/análisis , Diabetes Mellitus Tipo 2/sangre , Periodo Posprandial , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/microbiología , Dieta para Diabéticos , Microbioma Gastrointestinal , Humanos , Teléfono InteligenteRESUMEN
Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.
Asunto(s)
Colon/inmunología , Colon/microbiología , Inflamasomas/inmunología , Microbiota , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Péptidos Catiónicos Antimicrobianos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/metabolismo , Disbiosis/metabolismo , Vida Libre de Gérmenes , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-18/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/genética , Taurina/administración & dosificaciónRESUMEN
The immune system and the microbiota mutually interact to maintain homeostasis in the intestine. However, components of the microbiota can alter this balance and promote chronic inflammation, promoting intestinal tumor development. We review recent advances in understanding the complex interactions between the microbiota and the innate and adaptive immune systems and discuss their potential to lead us in new directions for understanding cancer biology and treatment.
Asunto(s)
Gastroenteritis/inmunología , Gastroenteritis/microbiología , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/microbiología , Microbiota , Humanos , Inmunidad Innata , Células Th17/inmunología , Receptores Toll-Like/inmunologíaRESUMEN
All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.
Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Intolerancia a la Glucosa , Microbiota , Animales , Disbiosis/microbiología , Disbiosis/fisiopatología , Conducta Alimentaria , Homeostasis , Humanos , Síndrome Jet Lag/fisiopatología , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/fisiopatología , Ratones , Obesidad/metabolismo , SueñoRESUMEN
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP: