Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836561

RESUMEN

Interferonopathies, interferon (IFN)-α/ß therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1-/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.


Asunto(s)
Caveolina 1/genética , Endotelio Vascular/metabolismo , Hipertensión Pulmonar/metabolismo , Interferón Tipo I/metabolismo , Animales , Células Cultivadas , Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Silenciador del Gen , Humanos , Hipertensión Pulmonar/fisiopatología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
2.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791441

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Células Endoteliales , PPAR gamma , Proteínas Proto-Oncogénicas c-akt , Arteria Pulmonar , Receptor Notch1 , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Células Endoteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Masculino , Proliferación Celular , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Femenino , Células Cultivadas
3.
Circulation ; 146(14): 1033-1045, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36004627

RESUMEN

BACKGROUND: Cell-free DNA (cfDNA) is a noninvasive marker of cellular injury. Its significance in pulmonary arterial hypertension (PAH) is unknown. METHODS: Plasma cfDNA was measured in 2 PAH cohorts (A, n=48; B, n=161) and controls (n=48). Data were collected for REVEAL 2.0 (Registry to Evaluate Early and Long-Term PAH Disease Management) scores and outcome determinations. Patients were divided into the following REVEAL risk groups: low (≤6), medium (7-8), and high (≥9). Total cfDNA concentrations were compared among controls and PAH risk groups by 1-way analysis of variance. Log-rank tests compared survival between cfDNA tertiles and REVEAL risk groups. Areas under the receiver operating characteristic curve were estimated from logistic regression models. A sample subset from cohort B (n=96) and controls (n=16) underwent bisulfite sequencing followed by a deconvolution algorithm to map cell-specific cfDNA methylation patterns, with concentrations compared using t tests. RESULTS: In cohort A, median (interquartile range) age was 62 years (47-71), with 75% female, and median (interquartile range) REVEAL 2.0 was 6 (4-9). In cohort B, median (interquartile range) age was 59 years (49-71), with 69% female, and median (interquartile range) REVEAL 2.0 was 7 (6-9). In both cohorts, cfDNA concentrations differed among patients with PAH of varying REVEAL risk and controls (analysis of variance P≤0.002) and were greater in the high-risk compared with the low-risk category (P≤0.002). In cohort B, death or lung transplant occurred in 14 of 54, 23 of 53, and 35 of 54 patients in the lowest, middle, and highest cfDNA tertiles, respectively. cfDNA levels stratified as tertiles (log-rank: P=0.0001) and REVEAL risk groups (log-rank: P<0.0001) each predicted transplant-free survival. The addition of cfDNA to REVEAL improved discrimination (area under the receiver operating characteristic curve, 0.72-0.78; P=0.02). Compared with controls, methylation analysis in patients with PAH revealed increased cfDNA originating from erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer cells, vascular endothelium, and cardiac myocytes (Bonferroni adjusted P<0.05). cfDNA concentrations derived from erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium were greater in patients with PAH with high-risk versus low-risk REVEAL scores (P≤0.02). CONCLUSIONS: Circulating cfDNA is elevated in patients with PAH, correlates with disease severity, and predicts worse survival. Results from cfDNA methylation analyses in patients with PAH are consistent with prevailing paradigms of disease pathogenesis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Hipertensión Arterial Pulmonar , Anciano , Biomarcadores , Ácidos Nucleicos Libres de Células/genética , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Hipertensión Arterial Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/genética , Curva ROC
4.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L783-L798, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039367

RESUMEN

NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.


Asunto(s)
Hipertensión Arterial Pulmonar , Enfermedades Vasculares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo , Enfermedades Vasculares/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Inflamación/patología , Factor de Transcripción COUP II/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L315-L332, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043674

RESUMEN

Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Indoles , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Pirroles , Ratas , Disfunción Ventricular Derecha/tratamiento farmacológico
6.
Am J Respir Crit Care Med ; 202(4): 586-594, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32352834

RESUMEN

Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/sangre , Hipertensión Pulmonar Primaria Familiar/genética , ARN/sangre , Adulto , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad
7.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L98-L111, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617731

RESUMEN

Inflammatory cell infiltrates are a prominent feature of aberrant vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that immune effector cells contribute to disease progression. Genome-wide blood expression profiling studies have attempted to better define this inflammatory component of PAH pathobiology but have been hampered by small sample sizes, methodological differences, and very little gene-level reproducibility. The current meta-analysis (seven studies; 156 PAH patients/110 healthy controls) was performed to assess the comparability of data across studies and to possibly derive a generalizable transcriptomic signature. Idiopathic (IPAH) compared with disease-associated PAH (APAH) displayed highly similar expression profiles with no differentially expressed genes, even after substantially relaxing selection stringency. In contrast, using a false discovery rate of ≤1% and I2 < 40% (low-to-moderate heterogeneity across studies) both IPAH and APAH differed markedly from healthy controls with the combined PAH cohort yielding 1,269 differentially expressed, unique gene transcripts. Bioinformatic analyses, including gene-set enrichment, which uses all available data independent of gene selection thresholds, identified interferon, mammalian target of rapamycin/p70S6K, stress kinase, and Toll-like receptor signaling as enriched mechanisms within the PAH gene signature. Enriched biological functions and diseases included tumorigenesis, autoimmunity, antiviral response, and cell death consistent with prevailing theories of PAH pathogenesis. Although otherwise indistinguishable, APAH (predominantly PAH due to systemic sclerosis) had a somewhat stronger interferon profile than IPAH. Meta-analysis defined a robust and generalizable transcriptomic signature in the blood of PAH patients that can help inform the identification of biomarkers and therapeutic targets.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Arterial Pulmonar/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Reproducibilidad de los Resultados
8.
Curr Opin Pulm Med ; 26(5): 384-390, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701671

RESUMEN

PURPOSE OF REVIEW: The 6th World Symposium on Pulmonary Hypertension (WSPH) proposed lowering the mean pulmonary artery pressure (mPAP) threshold that defines pulmonary hypertension from ≥ 25 to > 20 mmHg. The historical context and evolution of the pulmonary hypertension definition and the data used to rationalize recent changes are reviewed here. RECENT FINDINGS: There are accumulating data on the clinical significance of mildly elevated mPAPs (21-24 mmHg). Studies have demonstrated lower exercise capacity and an increased risk of progression to overt pulmonary hypertension (mPAP ≥ 25 mmHg) in specific at-risk patient populations. Further, large registries across diverse pulmonary hypertension populations have identified increased mortality in patients with mPAPs 21-24 mmHg. Although the clinical sequelae of lowering the mPAP threshold remain unclear, this uncertainty has fueled recent debates within the pulmonary hypertension community. SUMMARY: The changes to the pulmonary hypertension definition proposed by the 6th WSPH are supported by normative hemodynamic data in healthy individuals as well as studies demonstrating an association between mPAPs above this normal range and increased mortality. Whether the higher mortality observed in patients with mildly elevated mPAPs is directly attributable to pulmonary vascular disease that is amenable to therapeutic intervention remains to be determined.


Asunto(s)
Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Presión Arterial , Congresos como Asunto , Progresión de la Enfermedad , Humanos , Factores de Riesgo , Resistencia Vascular
10.
BMC Pulm Med ; 18(1): 112, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996818

RESUMEN

BACKGROUND: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare cause of pulmonary hypertension that is associated with malignancies and is marked by the presence of non-occlusive tumor emboli and fibrocellular intimal proliferation of small pulmonary arteries leading to increased pulmonary vascular resistance and right heart failure. The diagnosis of PTTM is challenging to make pre-mortem and guidelines on treatment are lacking. CASE PRESENTATION: A 45-year-old woman with advanced squamous cell carcinoma of the cervix developed symptoms of dyspnea and evidence of right heart failure during a phase I clinical trial with cediranib and durvalumab. After an extensive evaluation, pre-capillary pulmonary hypertension was confirmed by right heart catheterization. Vasodilator therapy was initiated but resulted in the development of symptomatic hypoxemia and was discontinued. Despite continued supportive care, she continued to decline and was transitioned to hospice care. At autopsy, the cause of her right heart failure was found to be due to PTTM with features of pulmonary veno-occlusive disease (PVOD). CONCLUSION: PTTM and PVOD are important diagnoses to consider in patients with a malignancy and the development of right heart failure and may be manifestations of a spectrum of similar disease processes.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/secundario , Enfermedad Veno-Oclusiva Pulmonar/patología , Microangiopatías Trombóticas/patología , Neoplasias del Cuello Uterino/patología , Anticuerpos Monoclonales/uso terapéutico , Autopsia , Carcinoma de Células Escamosas/tratamiento farmacológico , Resultado Fatal , Femenino , Humanos , Pulmón/irrigación sanguínea , Pulmón/patología , Pulmón/fisiopatología , Neoplasias Pulmonares/complicaciones , Persona de Mediana Edad , Células Neoplásicas Circulantes/patología , Enfermedad Veno-Oclusiva Pulmonar/etiología , Quinazolinas/uso terapéutico , Microangiopatías Trombóticas/etiología , Neoplasias del Cuello Uterino/tratamiento farmacológico
11.
J Biol Chem ; 291(45): 23628-23644, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27650495

RESUMEN

Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.


Asunto(s)
FN-kappa B/inmunología , Receptores de Glucocorticoides/inmunología , Receptores de Mineralocorticoides/inmunología , Transducción de Señal , Factor de Transcripción AP-1/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , ADN/química , Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inflamación/genética , Inflamación/inmunología , Mutación , Dominios Proteicos , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/genética
12.
J Biol Chem ; 290(32): 19544-57, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26105050

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) ligands have been widely used to treat type 2 diabetes mellitus. However, knowledge of PPARγ signaling remains incomplete. In addition to PPARγ, these drugs also activate G protein-coupled receptor 40 (GPR40), a Gαq-coupled free fatty acid receptor linked to MAPK networks and glucose homeostasis. Notably, p38 MAPK activation has been implicated in PPARγ signaling. Here, rosiglitazone (RGZ) activation of GPR40 and p38 MAPK was found to boost PPARγ-induced gene transcription in human endothelium. Inhibition or knockdown of p38 MAPK or expression of a dominant negative (DN) p38 MAPK mutant blunted RGZ-induced PPARγ DNA binding and reporter activity in EA.hy926 human endothelial cells. GPR40 inhibition or knockdown, or expression of a DN-Gαq mutant likewise blocked activation of both p38 MAPK and PPARγ reporters. Importantly, RGZ induction of PPARγ target genes in primary human pulmonary artery endothelial cells (PAECs) was suppressed by knockdown of either p38 MAPK or GPR40. GPR40/PPARγ signal transduction was dependent on p38 MAPK activation and induction of PPARγ co-activator-1 (PGC1α). Silencing of p38 MAPK or GPR40 abolished the ability of RGZ to induce phosphorylation and expression of PGC1α in PAECs. Knockdown of PGC1α, its essential activator SIRT1, or its binding partner/co-activator EP300 inhibited RGZ induction of PPARγ-regulated genes in PAECs. RGZ/GPR40/p38 MAPK signaling also led to EP300 phosphorylation, an event that enhances PPARγ target gene transcription. Thus, GPR40 and PPARγ can function as an integrated two-receptor signal transduction pathway, a finding with implications for rational drug development.


Asunto(s)
Células Endoteliales/metabolismo , PPAR gamma/metabolismo , Receptor Cross-Talk , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular , ADN/genética , ADN/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Hipoglucemiantes/farmacología , Ligandos , Luciferasas/genética , Luciferasas/metabolismo , PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Pioglitazona , Cultivo Primario de Células , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Rosiglitazona , Sirtuina 1/genética , Sirtuina 1/metabolismo , Tiazolidinedionas/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
13.
Am J Physiol Lung Cell Mol Physiol ; 310(2): L187-201, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26589479

RESUMEN

A proliferative endothelial cell phenotype, inflammation, and pulmonary vascular remodeling are prominent features of pulmonary arterial hypertension (PAH). Bone morphogenetic protein type II receptor (BMPR2) loss-of-function is the most common cause of heritable PAH and has been closely linked to the formation of pathological plexiform lesions. Although some BMPR2 mutations leave ligand-dependent responses intact, the disruption of ligand-independent, noncanonical functions are universal among PAH-associated BMPR2 genotypes, but incompletely understood. This study examined the noncanonical signaling consequences of BMPR2 silencing in human pulmonary artery endothelial cells to identify potential therapeutic targets. BMPR2 siRNA silencing resulted in a proliferative, promigratory pulmonary artery endothelial cell phenotype and disruption of cytoskeletal architecture. Expression profiling closely reflected these phenotypic changes. Gene set enrichment and promoter analyses, as well as the differential expression of pathway components identified Ras/Raf/ERK signaling as an important consequence of BMPR2 silencing. Raf family members and ERK1/2 were constitutively activated after BMPR2 knockdown. Two Raf inhibitors, sorafenib and AZ628, and low-dose nintedanib, a triple receptor tyrosine kinase inhibitor upstream from Ras, reversed the abnormal proliferation and hypermotility of BMPR2 deficiency. Inhibition of dysregulated Ras/Raf/ERK signaling may be useful in reversing vascular remodeling in PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular , Células Endoteliales/citología , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Adulto , Anciano , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Femenino , Silenciador del Gen , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Remodelación Vascular/genética , Adulto Joven , Quinasas raf/metabolismo
14.
Biol Blood Marrow Transplant ; 20(7): 969-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657447

RESUMEN

The mortality rate of alveolar hemorrhage (AH) after allogeneic hematopoietic stem cell transplantation is greater than 60% with supportive care and high-dose steroid therapy. We performed a retrospective cohort analysis to assess the benefits and risks of recombinant human factor VIIa (rFVIIa) as a therapeutic adjunct for AH. Between 2005 and 2012, 57 episodes of AH occurred in 37 patients. Fourteen episodes (in 14 patients) were treated with steroids alone, and 43 episodes (in 23 patients) were treated with steroids and rFVIIa. The median steroid dose was 1.9 mg/kg/d (interquartile range [IQR], 0.8 to 3.5 mg/kg/d; methylprednisolone equivalents) and did not differ statistically between the 2 groups. The median rFVIIa dose was 41 µg/kg (IQR, 39 to 62 µg/kg), and a median of 3 doses (IQR, 2 to 17) was administered per episode. Concurrent infection was diagnosed in 65% of the episodes. Patients had moderately severe hypoxia (median PaO2/FiO2, 193 [IQR, 141 to 262]); 72% required mechanical ventilation, and 42% survived to extubation. The addition of rFVIIa did not alter time to resolution of AH (P = .50), duration of mechanical ventilation (P = .89), duration of oxygen supplementation (P = .55), or hospital mortality (P = .27). Four possible thrombotic events (9% of 43 episodes) occurred with rFVIIa. rFVIIa in combination with corticosteroids did not confer clear clinical advantages compared with corticosteroids alone. In patients with AH following hematopoietic stem cell transplantation, clinical factors (ie, worsening infection, multiple organ failure, or recrudescence of primary disease) may be more important than the benefit of enhanced hemostasis from rFVIIa.


Asunto(s)
Factor VIIa/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Hemorragia/tratamiento farmacológico , Hemorragia/etiología , Enfermedades Pulmonares/tratamiento farmacológico , Acondicionamiento Pretrasplante/efectos adversos , Adolescente , Adulto , Anciano , Niño , Estudios de Cohortes , Femenino , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Masculino , Persona de Mediana Edad , Alveolos Pulmonares/patología , Proteínas Recombinantes/uso terapéutico , Estudios Retrospectivos , Trasplante Homólogo , Adulto Joven
17.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38903104

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, activates NOTCH1 signaling and plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in PAECs activated AKT and decreased DLL4 expression. DLL4 loss was also seen in lungs of patients with IPAH and HPAH. Over-expression of DLL4 in PAECs induced BMPR2 promoter activity and exogenous DLL4 increased BMPR2 mRNA through NOTCH1 activation. Furthermore, DLL4/NOTCH1 signaling blocked AKT activation, decreased proliferation and reversed EndoMT in BMPR2 - silenced PAECs and ECs from IPAH patients. PPARγ, suppressed by BMPR2 loss, was induced and activated by DLL4/NOTCH1 signaling in both BMPR2 -silenced and IPAH PAECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Finally, leniolisib, a well-tolerated oral PI3K8/AKT inhibitor, decreased cell proliferation, induced apoptosis and reversed markers of EndoMT in BMPR2 -silenced PAECs. Restoring DLL4/NOTCH1/PPARγ signaling and/or suppressing AKT activation may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.

18.
Comput Biol Med ; 141: 105041, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34836627

RESUMEN

BACKGROUND: Assessment of regional myocardial function at native pixel-level resolution can play a crucial role in recognizing the early signs of the decline in regional myocardial function. Extensive data processing in existing techniques limits the effective resolution and accuracy of the generated strain maps. The purpose of this study is to compute myocardial principal strain maps εp1 and εp2 from tagged MRI (tMRI) at the native image resolution using deep-learning local patch convolutional neural network (CNN) models (DeepStrain). METHODS: For network training, validation, and testing, realistic tMRI datasets were generated and consisted of 53,606 cine images simulating the heart, the liver, blood pool, and backgrounds, including ranges of shapes, positions, motion patterns, noise, and strain. In addition, 102 in-vivo image datasets from three healthy subjects, and three Pulmonary Arterial Hypertension patients, were acquired and used to assess the network's in-vivo performance. Four convolutional neural networks were trained for mapping input tagging patterns to corresponding ground-truth principal strains using different cost functions. Strain maps using harmonic phase analysis (HARP) were obtained with various spectral filtering settings for comparison. CNN and HARP strain maps were compared at the pixel level versus the ground-truth and versus the least-loss in-vivo maps using Pearson correlation coefficients (R) and the median error and Inter-Quartile Range (IQR) histograms. RESULTS: CNN-based local patch DeepStrain maps at a phantom resolution of 1.1mm × 1.1 mm and in-vivo resolution of 2.1mm × 1.6 mm were artifact-free with multiple fold improvement with εp1 ground-truth median error of 0.009(0.007) vs. 0.32(0.385) using HARP and εp2 ground-truth error of 0.016(0.021) vs. 0.181(0.08) using HARP. CNN-based strain maps showed substantially higher agreement with the ground-truth maps with correlation coefficients R > 0.91 for εp1 and εp2 compared to R < 0.21 and R < 0.82 for HARP-generated maps, respectively. CONCLUSION: CNN-generated Eulerian strain mapping permits artifact-free visualization of myocardial function at the native image resolution.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Corazón/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Fantasmas de Imagen
19.
AIDS ; 36(14): 1969-1978, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848586

RESUMEN

OBJECTIVE: There are four conditions caused by Kaposi sarcoma herpesvirus (KSHV): Kaposi sarcoma, KSHV-associated multicentric Castleman disease (MCD), primary effusion lymphoma (PEL), and KSHV inflammatory cytokine syndrome (KICS). These KSHV-associated disorders (KADs) often occur in people with HIV and can lead to multiorgan dysfunction requiring admission to the ICU. However, little is known about patient outcomes in this setting. METHODS: A retrospective study of patients with KADs admitted to the ICU between 2010 and 2021 was conducted, examining KAD admission diagnoses, HIV characteristics, selected cytokine profiles, and ICU interventions. Primary outcomes were 60-day and median overall survival from ICU admission to death from any cause. RESULTS: Forty-seven patients (all but one with HIV coinfection) were included. At ICU admission, 44 patients (94%) were on antiretroviral therapy with a median CD4 + count of 88 cells/µl and HIV viral load of 23 copies/ml. The most common presentation was respiratory failure alone (19%) or with hypotension (17%). Twenty-two (47%) patients had presumed KICS (with or without Kaposi sarcoma) at admission and an additional KAD was diagnosed in 36% of these patients. IL-6 levels did not vary across KAD subtype. Twenty (43%) patients received KAD-directed therapy in the ICU. Sixty-day survival was 70% and median overall survival was 9 months. CONCLUSION: The majority of patients with HIV and KADs admitted to the ICU had well controlled HIV. Additional KAD were diagnosed during ICU admission in a proportion of patients who presented with presumed KICS. Critical illness did not preclude a subset of patients from receiving KAD-directed therapy in the ICU.


Asunto(s)
Enfermedad de Castleman , Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/patología , Estudios Retrospectivos , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Enfermedad de Castleman/complicaciones , Enfermedad de Castleman/tratamiento farmacológico , Citocinas , Unidades de Cuidados Intensivos
20.
Sci Rep ; 11(1): 23021, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836988

RESUMEN

Regional soft tissue mechanical strain offers crucial insights into tissue's mechanical function and vital indicators for different related disorders. Tagging magnetic resonance imaging (tMRI) has been the standard method for assessing the mechanical characteristics of organs such as the heart, the liver, and the brain. However, constructing accurate artifact-free pixelwise strain maps at the native resolution of the tagged images has for decades been a challenging unsolved task. In this work, we developed an end-to-end deep-learning framework for pixel-to-pixel mapping of the two-dimensional Eulerian principal strains [Formula: see text] and [Formula: see text] directly from 1-1 spatial modulation of magnetization (SPAMM) tMRI at native image resolution using convolutional neural network (CNN). Four different deep learning conditional generative adversarial network (cGAN) approaches were examined. Validations were performed using Monte Carlo computational model simulations, and in-vivo datasets, and compared to the harmonic phase (HARP) method, a conventional and validated method for tMRI analysis, with six different filter settings. Principal strain maps of Monte Carlo tMRI simulations with various anatomical, functional, and imaging parameters demonstrate artifact-free solid agreements with the corresponding ground-truth maps. Correlations with the ground-truth strain maps were R = 0.90 and 0.92 for the best-proposed cGAN approach compared to R = 0.12 and 0.73 for the best HARP method for [Formula: see text] and [Formula: see text], respectively. The proposed cGAN approach's error was substantially lower than the error in the best HARP method at all strain ranges. In-vivo results are presented for both healthy subjects and patients with cardiac conditions (Pulmonary Hypertension). Strain maps, obtained directly from their corresponding tagged MR images, depict for the first time anatomical, functional, and temporal details at pixelwise native high resolution with unprecedented clarity. This work demonstrates the feasibility of using the deep learning cGAN for direct myocardial and liver Eulerian strain mapping from tMRI at native image resolution with minimal artifacts.


Asunto(s)
Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Hígado/diagnóstico por imagen , Método de Montecarlo , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA