Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Infect Dis ; 218(4): 645-653, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-29659916

RESUMEN

Background: Cholera is a public health problem worldwide, and the risk factors for infection are only partially understood. Methods: We prospectively studied household contacts of patients with cholera to compare those who were infected to those who were not. We constructed predictive machine learning models of susceptibility, using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. Results: We found that machine learning models based on gut microbiota, as well as models based on known clinical and epidemiological risk factors, predicted V. cholerae infection. A predictive gut microbiota of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. Conclusion: These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.


Asunto(s)
Cólera/epidemiología , Cólera/inmunología , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Microbiota , Vibrio cholerae/crecimiento & desarrollo , Vibrio cholerae/inmunología , Adolescente , Adulto , Niño , Preescolar , Simulación por Computador , Métodos Epidemiológicos , Composición Familiar , Salud de la Familia , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Adulto Joven
2.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29133347

RESUMEN

To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.


Asunto(s)
Cólera/inmunología , Inmunidad Innata , Inmunidad Mucosa , Transducción de Señal , Vibrio cholerae/inmunología , Adulto , Biopsia , Cólera/patología , Duodeno/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Adulto Joven
3.
Infect Immun ; 83(3): 1089-103, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25561705

RESUMEN

Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12ß (IL-12ß) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12ß was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.


Asunto(s)
Cólera/genética , Convalecencia , Duodeno/inmunología , Inmunidad Mucosa , Transducción de Señal/inmunología , Vibrio cholerae O1/patogenicidad , Enfermedad Aguda , Apoptosis/inmunología , Biopsia , Calgranulina A/genética , Calgranulina A/inmunología , Cólera/inmunología , Cólera/microbiología , Cólera/patología , Duodeno/microbiología , Duodeno/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Subunidad p40 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/inmunología , Proteómica , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/inmunología , Vibrio cholerae O1/crecimiento & desarrollo , Vibrio cholerae O1/inmunología
4.
Genomics ; 104(6 Pt A): 447-52, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25263109

RESUMEN

A common phenotype within bacterial biofilms is the small, "wrinkly" colony, which may associate with worse prognoses from biofilm-associated infections. The mechanisms that produce these variants in Burkholderia are undefined. Here we report the mutational and ecological causes of wrinkly (W) colonies that evolved during experimental biofilm evolution of Burkholderia cenocepacia. Mutations clustered in a homologous pathway to the Pseudomonas wsp operon but with a distinct terminal signaling mechanism, and their parallel evolution suggested that they inhabited an equivalent biofilm niche. We tested this hypothesis of niche complementarity by measuring effects of substituting different W variants in the same evolved biofilm community. Despite phenotypic differences among W mutants growing alone, fitness of reconstituted mixed biofilms did not differ significantly. In conclusion, the evolution of small-colony variants in Burkholderia biofilms appears to be driven by an ecological opportunity that generates strong selection for constitutive wsp mutants to inhabit a common niche.


Asunto(s)
Biopelículas , Burkholderia cenocepacia/fisiología , Evolución Molecular , Aptitud Genética , Variación Genética , Mutación , Fenotipo
5.
Appl Environ Microbiol ; 78(10): 3778-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22407686

RESUMEN

Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed.


Asunto(s)
Agua de Mar/microbiología , Mariscos/microbiología , Vibrio parahaemolyticus/aislamiento & purificación , ADN Bacteriano/química , ADN Bacteriano/genética , Variación Genética , Tipificación Molecular , Tipificación de Secuencias Multilocus , New Hampshire , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/genética
6.
Appl Environ Microbiol ; 76(8): 2387-96, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20154121

RESUMEN

It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted.


Asunto(s)
Adaptación Fisiológica , Burkholderia/fisiología , Medios de Cultivo/química , Cebollas/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Burkholderia/crecimiento & desarrollo , Burkholderia/patogenicidad , Caenorhabditis elegans/microbiología , Locomoción , Percepción de Quorum , Virulencia
7.
mSphere ; 4(4)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434744

RESUMEN

Vibrio cholerae infection provides long-lasting protective immunity, while oral, inactivated cholera vaccines (OCV) result in more-limited protection. To identify characteristics of the innate immune response that may distinguish natural V. cholerae infection from OCV, we stimulated differentiated, macrophage-like THP-1 cells with live versus heat-inactivated V. cholerae with and without endogenous or exogenous cholera holotoxin (CT). Interleukin 23A gene (IL23A) expression was higher in cells exposed to live V. cholerae than in cells exposed to inactivated organisms (mean change, 38-fold; 95% confidence interval [95% CI], 4.0 to 42; P < 0.01). IL-23 secretion was also higher in cells exposed to live V. cholerae than in cells exposed to inactivated V. cholerae (mean change, 5.6-fold; 95% CI, 4.4 to 11; P < 0.001). This increase in IL-23 secretion was more marked than for other key innate immune cytokines (e.g., IL-1ß and IL-6) and dependent on exposure to the combination of both live V. cholerae and CT. While IL-23 secretion was reduced following stimulation with either heat-inactivated wild-type V. cholerae or a live isogenic ctxAB mutant of V. cholerae, the addition of exogenous CT restored IL-23 secretion in combination with the live isogenic ctxAB mutant V. cholerae, but not when it was paired with stimulation by heat-inactivated V. cholerae The posttranslational regulation of IL-23 under these conditions was dependent on the activity of the cysteine protease cathepsin B. In humans, IL-23 promotes the differentiation of Th17 cells to T follicular helper cells, which maintain and support long-term memory B cell generation after infection. Based on these findings, the stimulation of IL-23 production may be a determinant of protective immunity following V. cholerae infection.IMPORTANCE An episode of cholera provides better protection against reinfection than oral cholera vaccines, and the reasons for this are still under study. To better understand this, we compared the immune responses of human cells exposed to live Vibrio cholerae with those of cells exposed to heat-killed V. cholerae (similar to the contents of oral cholera vaccines). We also compared the effects of active cholera toxin and the inactive cholera toxin B subunit (which is included in some cholera vaccines). One key immune signaling molecule, IL-23, was uniquely produced in response to the combination of live bacteria and active cholera holotoxin. Stimulation with V. cholerae that did not produce the active toxin or was killed did not produce an IL-23 response. The stimulation of IL-23 production by cholera toxin-producing V. cholerae may be important in conferring long-term immunity after cholera.


Asunto(s)
Antígenos Bacterianos/inmunología , Inmunidad Innata , Subunidad p19 de la Interleucina-23/genética , Monocitos/inmunología , Procesamiento Postranscripcional del ARN/inmunología , Vibrio cholerae/inmunología , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/química , Toxina del Cólera/inmunología , Vacunas contra el Cólera/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Calor , Humanos , Subunidad p19 de la Interleucina-23/inmunología , Monocitos/microbiología , Células THP-1 , Vacunas de Productos Inactivados/inmunología , Vacunas Vivas no Atenuadas/inmunología , Vibrio cholerae/patogenicidad
8.
Evolution ; 69(2): 283-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25494960

RESUMEN

Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia.


Asunto(s)
Biopelículas , Evolución Biológica , Burkholderia cenocepacia/fisiología , Adaptación Fisiológica , Ecotipo , Variación Genética , Modelos Teóricos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA